BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 12809)

  • 1. External yeast beta-fructosidase. Affinity labeling of the active site.
    Braun H
    Biochim Biophys Acta; 1976 Dec; 452(2):452-7. PubMed ID: 12809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. External yeast beta-fructosidase: stereospecific labeling by [3H]conduritol-beta-epoxide and isolation of labeled peptides from the active site.
    Braun H
    Biochim Biophys Acta; 1977 Nov; 485(1):141-6. PubMed ID: 911859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of alpha-glucosidase by the active-site-directed inhibitor, conduritol B epoxide.
    Yang SJ; Ge SG; Zeng YC; Zhang SZ
    Biochim Biophys Acta; 1985 Apr; 828(3):236-40. PubMed ID: 3886011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereospecific ring opening of conduritol-B-epoxide by an active site asparatate residue of sucrase-isomaltase.
    Braun H; Legler G; Deshusses J; Semenza G
    Biochim Biophys Acta; 1977 Jul; 483(1):135-40. PubMed ID: 560212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active-site-directed inactivation of human liver alpha-L-fucosidase by conduritol C trans-epoxide.
    White WJ; Schray KJ; Legler G; Alhadeff JA
    Biochim Biophys Acta; 1986 Sep; 873(2):198-203. PubMed ID: 3756175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of an active-site residue in yeast invertase by affinity labeling and site-directed mutagenesis.
    Reddy VA; Maley F
    J Biol Chem; 1990 Jul; 265(19):10817-20. PubMed ID: 2113524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in active site structure in a family of beta-glucan endohydrolases deduced from the kinetics of inactivation by epoxyalkyl beta-oligoglucosides.
    Høj PB; Rodriguez EB; Stick RV; Stone BA
    J Biol Chem; 1989 Mar; 264(9):4939-47. PubMed ID: 2494179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Affinity labeling of adenine nucleotide-related enzymes with reactive adenine nucleotide analogs. II. Affinity labeling of phosphoglycerate kinase with a reactive AMP analog.
    Suzuki K; Eguchi C; Imahori K
    J Biochem; 1977 May; 81(5):1393-9. PubMed ID: 19433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carboxyl groups at the two active centers of sucrase-isomaltase from rabbit small intestine.
    Braun H; Cogoli A; Semenza G
    Eur J Biochem; 1977 Mar; 73(2):437-42. PubMed ID: 14830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Affinity labeling of the active sites in the sucrase-isomaltase complex from small intestine.
    Quaroni A; Gershon E; Semenza G
    J Biol Chem; 1974 Oct; 249(20):6424-33. PubMed ID: 4422495
    [No Abstract]   [Full Text] [Related]  

  • 11. Conduritol aziridine: a new mechanism-based glucosidase inactivator.
    Caron G; Withers SG
    Biochem Biophys Res Commun; 1989 Aug; 163(1):495-9. PubMed ID: 2673241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beta-D-fructofuranoside fructohydrolase from yeast.
    Goldstein A; Lampen JO
    Methods Enzymol; 1975; 42():504-11. PubMed ID: 237205
    [No Abstract]   [Full Text] [Related]  

  • 13. Specfic irreversible inhibition of sweet-almond beta-glucosidase by some beta-glycopyranosylepoxyalkanes and beta-d-glucopyranosyl isothiocyanate.
    Shulman ML; Shiyan SD; Khorlin AY
    Biochim Biophys Acta; 1976 Aug; 445(1):169-81. PubMed ID: 8136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the active site nucleophile in the thermostable beta-glycosidase from the archaeon Sulfolobus solfataricus expressed in Escherichia coli.
    Febbraio F; Barone R; D'Auria S; Rossi M; Nucci R; Piccialli G; De Napoli L; Orrù S; Pucci P
    Biochemistry; 1997 Mar; 36(11):3068-75. PubMed ID: 9115982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the active site of the cyanogenic beta-D-glucosidase (linamarase) from Manihot esculenta Crantz (cassava). I. Evidence for an essential carboxylate and a reactive histidine residue in a single catalytic center.
    Keresztessy Z; Kiss L; Hughes MA
    Arch Biochem Biophys; 1994 Oct; 314(1):142-52. PubMed ID: 7944386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the active site of the extracellular beta-D-xylosidase from Aspergillus carbonarius.
    Kiss T; Erdei A; Kiss L
    Arch Biochem Biophys; 2002 Mar; 399(2):188-94. PubMed ID: 11888205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of inhibitors in the study of glycosidases.
    Lalégerie P; Legler G; Yon JM
    Biochimie; 1982; 64(11-12):977-1000. PubMed ID: 6819005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanism of action of beta-glucosidase from Botryodiplodia theobromae Pat.
    Umezurike GM
    Biochem J; 1987 Jan; 241(2):455-62. PubMed ID: 3109376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of beta-glucosidase from Helix pomatia by active site-directed inhibitors.
    Donsimoni R; Legler G; Bourbouze R; Lalegerie P
    Enzyme; 1988; 39(2):78-89. PubMed ID: 2969330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of yeast hexokinase by 2-aminothiophenol. Evidence for a 'half-of-the-sites' mechanism.
    Puri RN; Roskoski R
    Biochem J; 1988 Sep; 254(3):819-27. PubMed ID: 2848499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.