BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 12809290)

  • 1. Characterization of lead removal from contaminated soils by nontoxic soil-washing agents.
    Neilson JW; Artiola JF; Maier RM
    J Environ Qual; 2003; 32(3):899-908. PubMed ID: 12809290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chelant extraction of heavy metals from contaminated soils.
    Peters RW
    J Hazard Mater; 1999 Apr; 66(1-2):151-210. PubMed ID: 10379036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosurfactant technology for remediation of cadmium and lead contaminated soils.
    Juwarkar AA; Nair A; Dubey KV; Singh SK; Devotta S
    Chemosphere; 2007 Aug; 68(10):1996-2002. PubMed ID: 17399765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of extraction procedures for removing lead from contaminated soil.
    Tawinteung N; Parkpian P; DeLaune RD; Jugsujinda A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(2):385-407. PubMed ID: 15717783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Remediation of Cu-Pb-contaminated loess soil by leaching with chelating agent and biosurfactant].
    Liu X; Wang JT; Zhang M; Wang L; Yang YT
    Huan Jing Ke Xue; 2013 Apr; 34(4):1590-7. PubMed ID: 23798147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines.
    Jang M; Hwang JS; Choi SI
    Chemosphere; 2007 Jan; 66(1):8-17. PubMed ID: 16831457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of Pb and Zn from contaminated soil by different washing methods: the influence of reagents and ultrasound.
    Wang J; Jiang J; Li D; Li T; Li K; Tian S
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):20084-91. PubMed ID: 26300361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remediation of hexachlorobenzene contaminated soils by rhamnolipid enhanced soil washing coupled with activated carbon selective adsorption.
    Wan J; Chai L; Lu X; Lin Y; Zhang S
    J Hazard Mater; 2011 May; 189(1-2):458-64. PubMed ID: 21397398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The sequential use of washing and an electrochemical reduction process for the remediation of lead-contaminated soils.
    Demir A; Köleli N
    Environ Technol; 2013; 34(5-8):799-805. PubMed ID: 23837331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of remediation process with plant-derived biosurfactant for recovery of heavy metals from contaminated soils.
    Hong KJ; Tokunaga S; Kajiuchi T
    Chemosphere; 2002 Oct; 49(4):379-87. PubMed ID: 12365835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of rhamnolipid biosurfactant and Brij-35 synthetic surfactant on
    Wolf DC; Gan J
    Environ Pollut; 2018 Dec; 243(Pt B):1846-1853. PubMed ID: 30408872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of Cadmium and Lead from Contaminated Soils Using Sophorolipids from Fermentation Culture of
    Qi X; Xu X; Zhong C; Jiang T; Wei W; Song X
    Int J Environ Res Public Health; 2018 Oct; 15(11):. PubMed ID: 30360495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of extracting reagents and metal speciation on the removal of heavy metal contaminated soils by chemical extraction.
    Lee CS; Kao MM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(5):1233-49. PubMed ID: 15137694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of washing conditions with biogenic mobilizing agents for marine fuel-contaminated beach sands.
    Arelli A; Nuzzo A; Sabia C; Banat IM; Zanaroli G; Fava F
    N Biotechnol; 2018 Jul; 43():13-22. PubMed ID: 29288741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of Cu, Pb and Zn by foam fractionation and a soil washing process from contaminated industrial soils using soapberry-derived saponin: a comparative effectiveness assessment.
    Maity JP; Huang YM; Hsu CM; Wu CI; Chen CC; Li CY; Jean JS; Chang YF; Chen CY
    Chemosphere; 2013 Aug; 92(10):1286-93. PubMed ID: 23714147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced solubilization of arsenic and 2,3,4,6 tetrachlorophenol from soils by a cyclodextrin derivative.
    Chatain V; Hanna K; de Brauer C; Bayard R; Germain P
    Chemosphere; 2004 Oct; 57(3):197-206. PubMed ID: 15312736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal, redistribution, and potential risks of soil Cd, Pb, and Zn after washing with various extractants.
    Chen C; Chen Y; Xie T; Wang MK; Wang G
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16881-8. PubMed ID: 26104899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of using humic substances from compost to remove heavy metals (Cd, Cu, Ni, Pb, Zn) from contaminated soil aged for different periods of time.
    Kulikowska D; Gusiatin ZM; Bułkowska K; Klik B
    J Hazard Mater; 2015 Dec; 300():882-891. PubMed ID: 26462121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of Pb and MDF from contaminated soils by EDTA- and SDS-enhanced washing.
    Zhang W; Tsang DC; Lo IM
    Chemosphere; 2007 Feb; 66(11):2025-34. PubMed ID: 17123574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heavy metal removal by GLDA washing: Optimization, redistribution, recycling, and changes in soil fertility.
    Wang G; Zhang S; Xu X; Zhong Q; Zhang C; Jia Y; Li T; Deng O; Li Y
    Sci Total Environ; 2016 Nov; 569-570():557-568. PubMed ID: 27371771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.