BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 12809303)

  • 1. Herbicides and herbicide degradation products in Upper Midwest agricultural streams during August base-flow conditions.
    Kalkhoff SJ; Lee KE; Porter SD; Terrio PJ; Thurman EM
    J Environ Qual; 2003; 32(3):1025-35. PubMed ID: 12809303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Herbicides and herbicide degradates in shallow groundwater and the Cedar River near a municipal well field, Cedar Rapids, Iowa.
    Boyd RA
    Sci Total Environ; 2000 Apr; 248(2-3):241-53. PubMed ID: 10805243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fate and movement of atrazine, cyanazine, metolachlor and selected degradation products in water resources of the deep Loess Hills of Southwestern Iowa, USA.
    Steinheimer TR; Scoggin KD
    J Environ Monit; 2001 Feb; 3(1):126-32. PubMed ID: 11253005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stream transport of herbicides and metabolites in a tile-drained, agricultural watershed.
    David MB; Gentry LE; Starks KM; Cooke RA
    J Environ Qual; 2003; 32(5):1790-801. PubMed ID: 14535322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of watershed system management on herbicide concentrations in Mississippi Delta oxbow lakes.
    Zablotowicz RM; Locke MA; Krutz LJ; Lerch RN; Lizotte RE; Knight SS; Gordon RE; Steinriede RW
    Sci Total Environ; 2006 Nov; 370(2-3):552-60. PubMed ID: 17005240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occurrence and load of selected herbicides and metabolites in the lower Mississippi River.
    Clark GM; Goolsby DA
    Sci Total Environ; 2000 Apr; 248(2-3):101-13. PubMed ID: 10805231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measured concentrations of herbicides and model predictions of atrazine fate in the Patuxent River estuary.
    McConnell LL; Harman-Fetcho JA; Hagy JD
    J Environ Qual; 2004; 33(2):594-604. PubMed ID: 15074811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finding minimal herbicide concentrations in ground water? Try looking for their degradates.
    Kolpin DW; Thurman EM; Linhart SM
    Sci Total Environ; 2000 Apr; 248(2-3):115-22. PubMed ID: 10805232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relating nutrient and herbicide fate with landscape features and characteristics of 15 subwatersheds in the Choptank River watershed.
    Hively WD; Hapeman CJ; McConnell LL; Fisher TR; Rice CP; McCarty GW; Sadeghi AM; Whitall DR; Downey PM; Niño de Guzmán GT; Bialek-Kalinski K; Lang MW; Gustafson AB; Sutton AJ; Sefton KA; Harman Fetcho JA
    Sci Total Environ; 2011 Sep; 409(19):3866-78. PubMed ID: 21733565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in herbicide concentrations in Midwestern streams in relation to changes in use, 1989-1998.
    Scribner EA; Battaglin WA; Goolsby DA; Thurman EM
    Sci Total Environ; 2000 Apr; 248(2-3):255-63. PubMed ID: 10805244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triazine and metolachlor herbicide residues in farm areas of the Lower Fraser valley, British Columbia, Canada.
    Wan MT; Kuo JN; McPherson B; Pasternak J
    J Environ Sci Health B; 2006; 41(6):855-67. PubMed ID: 16893775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Herbicides in ground water beneath Nebraska's Management Systems Evaluation Area.
    Spalding RF; Exner ME; Snow DD; Cassada DA; Burbach ME; Monson SJ
    J Environ Qual; 2003; 32(1):92-9. PubMed ID: 12549547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial and seasonal variations in atrazine and metolachlor surface water concentrations in Ontario (Canada) using ELISA.
    Byer JD; Struger J; Sverko E; Klawunn P; Todd A
    Chemosphere; 2011 Feb; 82(8):1155-60. PubMed ID: 21215422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Major herbicides in ground water: results from the National Water-Quality Assessment.
    Barbash JE; Thelin GP; Kolpin DW; Gilliom RJ
    J Environ Qual; 2001; 30(3):831-45. PubMed ID: 11401272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of sediment on the fate of metolachlor and atrazine in surface water.
    Rice PJ; Anderson TA; Coats JR
    Environ Toxicol Chem; 2004 May; 23(5):1145-55. PubMed ID: 15180365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tillage, intercrop, and controlled drainage-subirrigation influence atrazine, metribuzin, and metolachlor loss.
    Gaynor JD; Tan CS; Drury CF; Ng HY; Welacky TW; van Wesenbeeck IJ
    J Environ Qual; 2001; 30(2):561-72. PubMed ID: 11285918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effectiveness of Integrated Best Management Practices on Mitigation of Atrazine and Metolachlor in an Agricultural Lake Watershed.
    Lizotte R; Locke M; Bingner R; Steinriede RW; Smith S
    Bull Environ Contam Toxicol; 2017 Apr; 98(4):447-453. PubMed ID: 28078369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing winter-time herbicide behavior and exports in urban, rural, and mixed-use watersheds.
    Parajulee A; Lei YD; Cao X; McLagan DS; Yeung LWY; Mitchell CPJ; Wania F
    Environ Sci Process Impacts; 2018 May; 20(5):767-779. PubMed ID: 29578561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous assessment of sources, processes, and factors influencing herbicide losses to surface waters in a small agricultural catchment.
    Leu C; Singer H; Stamm C; Müller SR; Schwarzenbach RP
    Environ Sci Technol; 2004 Jul; 38(14):3827-34. PubMed ID: 15298189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Herbicide micropollutants in surface, ground and drinking waters within and near the area of Zagreb, Croatia.
    Fingler S; Mendaš G; Dvoršćak M; Stipičević S; Vasilić Ž; Drevenkar V
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):11017-11030. PubMed ID: 27335015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.