BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 12809487)

  • 21. Uncovering novel biochemistry in the mechanism of tryptophan tryptophylquinone cofactor biosynthesis.
    Wilmot CM; Davidson VL
    Curr Opin Chem Biol; 2009 Oct; 13(4):469-74. PubMed ID: 19648051
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mutational analysis of mau genes involved in methylamine metabolism in Paracoccus denitrificans.
    van der Palen CJ; Slotboom DJ; Jongejan L; Reijnders WN; Harms N; Duine JA; van Spanning RJ
    Eur J Biochem; 1995 Jun; 230(3):860-71. PubMed ID: 7601147
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetic mechanism for the initial steps in MauG-dependent tryptophan tryptophylquinone biosynthesis.
    Lee S; Shin S; Li X; Davidson VL
    Biochemistry; 2009 Mar; 48(11):2442-7. PubMed ID: 19196017
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutation of Trp(93) of MauG to tyrosine causes loss of bound Ca(2+) and alters the kinetic mechanism of tryptophan tryptophylquinone cofactor biosynthesis.
    Shin S; Feng M; Davidson VL
    Biochem J; 2013 Nov; 456(1):129-37. PubMed ID: 24024544
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Suicide inactivation of MauG during reaction with O(2) or H(2)O(2) in the absence of its natural protein substrate.
    Shin S; Lee S; Davidson VL
    Biochemistry; 2009 Oct; 48(42):10106-12. PubMed ID: 19788236
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heme iron nitrosyl complex of MauG reveals an efficient redox equilibrium between hemes with only one heme exclusively binding exogenous ligands.
    Fu R; Liu F; Davidson VL; Liu A
    Biochemistry; 2009 Dec; 48(49):11603-5. PubMed ID: 19911786
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Trp199Glu MauG variant reveals a role for Trp199 interactions with pre-methylamine dehydrogenase during tryptophan tryptophylquinone biosynthesis.
    Abu Tarboush N; Jensen LM; Wilmot CM; Davidson VL
    FEBS Lett; 2013 Jun; 587(12):1736-41. PubMed ID: 23669364
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electron transfer from the aminosemiquinone reaction intermediate of methylamine dehydrogenase to amicyanin.
    Bishop GR; Davidson VL
    Biochemistry; 1998 Aug; 37(31):11026-32. PubMed ID: 9692997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystallographic investigations of the tryptophan-derived cofactor in the quinoprotein methylamine dehydrogenase.
    Chen LY; Mathews FS; Davidson VL; Huizinga EG; Vellieux FM; Duine JA; Hol WG
    FEBS Lett; 1991 Aug; 287(1-2):163-6. PubMed ID: 1879526
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MauG: a di-heme enzyme required for methylamine dehydrogenase maturation.
    Wilmot CM; Yukl ET
    Dalton Trans; 2013 Mar; 42(9):3127-35. PubMed ID: 23086017
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanistic possibilities in MauG-dependent tryptophan tryptophylquinone biosynthesis.
    Li X; Jones LH; Pearson AR; Wilmot CM; Davidson VL
    Biochemistry; 2006 Nov; 45(44):13276-83. PubMed ID: 17073448
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isotope labeling studies reveal the order of oxygen incorporation into the tryptophan tryptophylquinone cofactor of methylamine dehydrogenase.
    Pearson AR; Marimanikkuppam S; Li X; Davidson VL; Wilmot CM
    J Am Chem Soc; 2006 Sep; 128(38):12416-7. PubMed ID: 16984182
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probing bis-Fe(IV) MauG: experimental evidence for the long-range charge-resonance model.
    Geng J; Davis I; Liu A
    Angew Chem Int Ed Engl; 2015 Mar; 54(12):3692-6. PubMed ID: 25631460
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tryptophan tryptophylquinone cofactor biogenesis in the aromatic amine dehydrogenase of Alcaligenes faecalis. Cofactor assembly and catalytic properties of recombinant enzyme expressed in Paracoccus denitrificans.
    Hothi P; Khadra KA; Combe JP; Leys D; Scrutton NS
    FEBS J; 2005 Nov; 272(22):5894-909. PubMed ID: 16279953
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MauG, a diheme enzyme that catalyzes tryptophan tryptophylquinone biosynthesis by remote catalysis.
    Shin S; Davidson VL
    Arch Biochem Biophys; 2014 Feb; 544():112-8. PubMed ID: 24144526
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Redox properties of tryptophan tryptophylquinone enzymes. Correlation with structure and reactivity.
    Zhu Z; Davidson VL
    J Biol Chem; 1998 Jun; 273(23):14254-60. PubMed ID: 9603931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutants of Methylobacterium extorquens and Paracoccus denitrificans deficient in c-type cytochrome biogenesis synthesise the methylamine-dehydrogenase polypeptides but cannot assemble the tryptophan-tryptophylquinone group.
    Page MD; Ferguson SJ
    Eur J Biochem; 1993 Dec; 218(2):711-7. PubMed ID: 8269962
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Factors which stabilize the methylamine dehydrogenase-amicyanin electron transfer protein complex revealed by site-directed mutagenesis.
    Davidson VL; Jones LH; Graichen ME; Mathews FS; Hosler JP
    Biochemistry; 1997 Oct; 36(42):12733-8. PubMed ID: 9335529
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ascorbate protects the diheme enzyme, MauG, against self-inflicted oxidative damage by an unusual antioxidant mechanism.
    Ma Z; Davidson VL
    Biochem J; 2017 Jul; 474(15):2563-2572. PubMed ID: 28634178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional importance of tyrosine 294 and the catalytic selectivity for the bis-Fe(IV) state of MauG revealed by replacement of this axial heme ligand with histidine .
    Abu Tarboush N; Jensen LM; Feng M; Tachikawa H; Wilmot CM; Davidson VL
    Biochemistry; 2010 Nov; 49(45):9783-91. PubMed ID: 20929212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.