These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
411 related articles for article (PubMed ID: 12809520)
1. Investigation of the role and mechanism of IF1 and STF1 proteins, twin inhibitory peptides which interact with the yeast mitochondrial ATP synthase. Venard R; Brèthes D; Giraud MF; Vaillier J; Velours J; Haraux F Biochemistry; 2003 Jun; 42(24):7626-36. PubMed ID: 12809520 [TBL] [Abstract][Full Text] [Related]
2. Functional transitions of F0F1-ATPase mediated by the inhibitory peptide IF1 in yeast coupled submitochondrial particles. Galkin M; Venard R; Vaillier J; Velours J; Haraux F Eur J Biochem; 2004 May; 271(10):1963-70. PubMed ID: 15128305 [TBL] [Abstract][Full Text] [Related]
3. Insight into the bind-lock mechanism of the yeast mitochondrial ATP synthase inhibitory peptide. Corvest V; Sigalat C; Haraux F Biochemistry; 2007 Jul; 46(29):8680-8. PubMed ID: 17595113 [TBL] [Abstract][Full Text] [Related]
4. Effect of the ATPase inhibitor protein IF1 on H+ translocation in the mitochondrial ATP synthase complex. Zanotti F; Gnoni A; Mangiullo R; Papa S Biochem Biophys Res Commun; 2009 Jun; 384(1):43-8. PubMed ID: 19379707 [TBL] [Abstract][Full Text] [Related]
5. Factors affecting the species-homologous and species-heterologous binding of mitochondrial ATPase inhibitor, IF1, to the mitochondrial ATPase of slow and fast heart-rate hearts. Rouslin W; Broge CW Arch Biochem Biophys; 1993 Jun; 303(2):443-50. PubMed ID: 8512326 [TBL] [Abstract][Full Text] [Related]
6. Effect of the protonmotive force on ATP-linked processes and mobilization of the bound natural ATPase inhibitor in beef heart submitochondrial particles. Klein G; Vignais PV J Bioenerg Biomembr; 1983 Dec; 15(6):347-62. PubMed ID: 18251431 [TBL] [Abstract][Full Text] [Related]
7. Energetic signalling in the control of mitochondrial F1F0 ATP synthase activity in health and disease. Grover GJ; Marone PA; Koetzner L; Seto-Young D Int J Biochem Cell Biol; 2008; 40(12):2698-701. PubMed ID: 18707016 [TBL] [Abstract][Full Text] [Related]
8. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis. Syroeshkin AV; Galkin MA; Sedlov AV; Vinogradov AD Biochemistry (Mosc); 1999 Oct; 64(10):1128-37. PubMed ID: 10561559 [TBL] [Abstract][Full Text] [Related]
9. Mitochondrial adenosinetriphosphatase inhibitor protein: reversible interaction with complex V (ATP synthetase complex). Galante YM; Wong SY; Hatefi Y Biochemistry; 1981 Apr; 20(9):2671-8. PubMed ID: 6263316 [TBL] [Abstract][Full Text] [Related]
10. Mitochondrial ATP synthase residue betaarginine-408, which interacts with the inhibitory site of regulatory protein IF1, is essential for the function of the enzyme. Ichikawa N; Chisuwa N; Tanase M; Nakamura M J Biochem; 2005 Aug; 138(2):201-7. PubMed ID: 16091595 [TBL] [Abstract][Full Text] [Related]
11. The inhibitor protein (IF1) promotes dimerization of the mitochondrial F1F0-ATP synthase. García JJ; Morales-Ríos E; Cortés-Hernandez P; Rodríguez-Zavala JS Biochemistry; 2006 Oct; 45(42):12695-703. PubMed ID: 17042487 [TBL] [Abstract][Full Text] [Related]
12. The F1-ATPase inhibitor Inh1 (IF1) affects suppression of mtDNA loss-lethality in Kluyveromyces lactis. Clark-Walker GD FEMS Yeast Res; 2007 Aug; 7(5):665-74. PubMed ID: 17286560 [TBL] [Abstract][Full Text] [Related]
13. Novel difference in IF1 reactivity to Zn2+ in rabbit versus rat cardiomyocytes, mitochondria, and submitochondrial particles. Rouslin W; Broge CW Biochem Biophys Res Commun; 1996 Oct; 227(1):8-14. PubMed ID: 8858095 [TBL] [Abstract][Full Text] [Related]
14. Modulation of the mitochondrial permeability transition by cyclophilin D: moving closer to F(0)-F(1) ATP synthase? Chinopoulos C; Adam-Vizi V Mitochondrion; 2012 Jan; 12(1):41-5. PubMed ID: 21586346 [TBL] [Abstract][Full Text] [Related]
15. Interactions involved in grasping and locking of the inhibitory peptide IF1 by mitochondrial ATP synthase. Wu Q; Andrianaivomananjaona T; Tetaud E; Corvest V; Haraux F Biochim Biophys Acta; 2014 Jun; 1837(6):761-72. PubMed ID: 24513195 [TBL] [Abstract][Full Text] [Related]
16. The inhibitor protein IF Carroll J; Watt IN; Wright CJ; Ding S; Fearnley IM; Walker JE J Biol Chem; 2024 Mar; 300(3):105690. PubMed ID: 38280428 [TBL] [Abstract][Full Text] [Related]
17. Identification of a conserved calmodulin-binding motif in the sequence of F0F1 ATPsynthase inhibitor protein. Contessi S; Haraux F; Mavelli I; Lippe G J Bioenerg Biomembr; 2005 Oct; 37(5):317-26. PubMed ID: 16341776 [TBL] [Abstract][Full Text] [Related]
18. Cross-linking of the endogenous inhibitor protein (IF1) with rotor (gamma, epsilon) and stator (alpha) subunits of the mitochondrial ATP synthase. Minauro-Sanmiguel F; Bravo C; García JJ J Bioenerg Biomembr; 2002 Dec; 34(6):433-43. PubMed ID: 12678435 [TBL] [Abstract][Full Text] [Related]
19. [Interaction of ATPase from submitochondrial fragments and a natural inhibitor protein during delta-mu-H+ generation on a membrane]. Vasil'eva EA; Panchenko MV; Vinogradov AD Biokhimiia; 1989 Sep; 54(9):1490-8. PubMed ID: 2531616 [TBL] [Abstract][Full Text] [Related]
20. Pharmacological profile of the selective mitochondrial F1F0 ATP hydrolase inhibitor BMS-199264 in myocardial ischemia. Grover GJ; Malm J Cardiovasc Ther; 2008; 26(4):287-96. PubMed ID: 19035880 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]