These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 12809566)

  • 1. Randomized trials, generalizability, and meta-analysis: graphical insights for binary outcomes.
    Baker SG; Kramer BS
    BMC Med Res Methodol; 2003 Jun; 3():10. PubMed ID: 12809566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple method for analyzing data from a randomized trial with a missing binary outcome.
    Baker SG; Freedman LS
    BMC Med Res Methodol; 2003 May; 3():8. PubMed ID: 12734019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Causal conclusions are most sensitive to unobserved binary covariates.
    Wang L; Krieger AM
    Stat Med; 2006 Jul; 25(13):2257-71. PubMed ID: 16220480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of confidence interval methods for the intraclass correlation coefficient in community-based cluster randomization trials with a binary outcome.
    Braschel MC; Svec I; Darlington GA; Donner A
    Clin Trials; 2016 Apr; 13(2):180-7. PubMed ID: 26415500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-center trials show larger treatment effects than multicenter trials: evidence from a meta-epidemiologic study.
    Dechartres A; Boutron I; Trinquart L; Charles P; Ravaud P
    Ann Intern Med; 2011 Jul; 155(1):39-51. PubMed ID: 21727292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Baseline adjustments for binary data in repeated cross-sectional cluster randomized trials.
    Nixon RM; Thompson SG
    Stat Med; 2003 Sep; 22(17):2673-92. PubMed ID: 12939779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining summaries of binary outcomes with those of continuous outcomes in a meta-analysis.
    Whitehead A; Bailey AJ; Elbourne D
    J Biopharm Stat; 1999 Mar; 9(1):1-16. PubMed ID: 10091907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneity and statistical significance in meta-analysis: an empirical study of 125 meta-analyses.
    Engels EA; Schmid CH; Terrin N; Olkin I; Lau J
    Stat Med; 2000 Jul; 19(13):1707-28. PubMed ID: 10861773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A meta-epidemiological study to examine the association between bias and treatment effects in neonatal trials.
    Bialy L; Vandermeer B; Lacaze-Masmonteil T; Dryden DM; Hartling L
    Evid Based Child Health; 2014 Dec; 9(4):1052-9. PubMed ID: 25504975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Meta-analysis of incidence of rare events.
    Lane PW
    Stat Methods Med Res; 2013 Apr; 22(2):117-32. PubMed ID: 22218366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fallacy of enrolling only high-risk subjects in cancer prevention trials: is there a "free lunch"?
    Baker SG; Kramer BS; Corle D
    BMC Med Res Methodol; 2004 Oct; 4():24. PubMed ID: 15461821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of re-randomized data in meta-analysis.
    Hozo I; Djulbegovic B; Clark O; Lyman GH
    BMC Med Res Methodol; 2005 May; 5():17. PubMed ID: 15882470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian random effects meta-analysis of trials with binary outcomes: methods for the absolute risk difference and relative risk scales.
    Warn DE; Thompson SG; Spiegelhalter DJ
    Stat Med; 2002 Jun; 21(11):1601-23. PubMed ID: 12111922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Borrowing strength from external trials in a meta-analysis.
    Higgins JP; Whitehead A
    Stat Med; 1996 Dec; 15(24):2733-49. PubMed ID: 8981683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Empirical evaluation of very large treatment effects of medical interventions.
    Pereira TV; Horwitz RI; Ioannidis JP
    JAMA; 2012 Oct; 308(16):1676-84. PubMed ID: 23093165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical methods for the meta-analysis of cluster randomization trials.
    Donner A; Piaggio G; Villar J
    Stat Methods Med Res; 2001 Oct; 10(5):325-38. PubMed ID: 11697225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meta-analysis of individual patient data from randomized trials: a review of methods used in practice.
    Simmonds MC; Higgins JP; Stewart LA; Tierney JF; Clarke MJ; Thompson SG
    Clin Trials; 2005; 2(3):209-17. PubMed ID: 16279144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robustness assessments are needed to reduce bias in meta-analyses that include zero-event randomized trials.
    Keus F; Wetterslev J; Gluud C; Gooszen HG; van Laarhoven CJ
    Am J Gastroenterol; 2009 Mar; 104(3):546-51. PubMed ID: 19262513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of glucose-lowering and multifactorial interventions on cardiovascular and mortality outcomes: a meta-analysis of randomized control trials.
    Seidu S; Achana FA; Gray LJ; Davies MJ; Khunti K
    Diabet Med; 2016 Mar; 33(3):280-9. PubMed ID: 26282461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple maximum likelihood estimates of efficacy in randomized trials and before-and-after studies, with implications for meta-analysis.
    Baker SG; Kramer BS
    Stat Methods Med Res; 2005 Aug; 14(4):349-67. PubMed ID: 16178137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.