BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 12809599)

  • 1. PARP goes transcription.
    Kraus WL; Lis JT
    Cell; 2003 Jun; 113(6):677-83. PubMed ID: 12809599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PARP-1 Interaction with and Activation by Histones and Nucleosomes.
    Thomas C; Kotova E; Tulin AV
    Methods Mol Biol; 2017; 1608():255-267. PubMed ID: 28695515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reciprocal binding of PARP-1 and histone H1 at promoters specifies transcriptional outcomes.
    Krishnakumar R; Gamble MJ; Frizzell KM; Berrocal JG; Kininis M; Kraus WL
    Science; 2008 Feb; 319(5864):819-21. PubMed ID: 18258916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global Transcriptome Analysis Reveals That Poly(ADP-Ribose) Polymerase 1 Regulates Gene Expression through EZH2.
    Martin KA; Cesaroni M; Denny MF; Lupey LN; Tempera I
    Mol Cell Biol; 2015 Dec; 35(23):3934-44. PubMed ID: 26370511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PARP-1 regulates chromatin structure and transcription through a KDM5B-dependent pathway.
    Krishnakumar R; Kraus WL
    Mol Cell; 2010 Sep; 39(5):736-49. PubMed ID: 20832725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation.
    Kraus WL
    Curr Opin Cell Biol; 2008 Jun; 20(3):294-302. PubMed ID: 18450439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PARP-1 and gene regulation: progress and puzzles.
    Kraus WL; Hottiger MO
    Mol Aspects Med; 2013 Dec; 34(6):1109-23. PubMed ID: 23357755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1.
    Kim MY; Mauro S; Gévry N; Lis JT; Kraus WL
    Cell; 2004 Dec; 119(6):803-14. PubMed ID: 15607977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PARP-2 regulates cell cycle-related genes through histone deacetylation and methylation independently of poly(ADP-ribosyl)ation.
    Liang YC; Hsu CY; Yao YL; Yang WM
    Biochem Biophys Res Commun; 2013 Feb; 431(1):58-64. PubMed ID: 23291187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional repression by binding of poly(ADP-ribose) polymerase to promoter sequences.
    Soldatenkov VA; Chasovskikh S; Potaman VN; Trofimova I; Smulson ME; Dritschilo A
    J Biol Chem; 2002 Jan; 277(1):665-70. PubMed ID: 11684688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(ADP-ribose) polymerase 1 is inhibited by a histone H2A variant, MacroH2A, and contributes to silencing of the inactive X chromosome.
    Nusinow DA; Hernández-Muñoz I; Fazzio TG; Shah GM; Kraus WL; Panning B
    J Biol Chem; 2007 Apr; 282(17):12851-9. PubMed ID: 17322296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical and Biophysical Methods for Analysis of Poly(ADP-Ribose) Polymerase 1 and Its Interactions with Chromatin.
    Chassé MH; Muthurajan UM; Clark NJ; Kramer MA; Chakravarthy S; Irving T; Luger K
    Methods Mol Biol; 2017; 1608():231-253. PubMed ID: 28695514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of human poly (ADP-ribose) polymerase 1 in Saccharomyces cerevisiae: Effect on survival, homologous recombination and identification of genes involved in intracellular localization.
    La Ferla M; Mercatanti A; Rocchi G; Lodovichi S; Cervelli T; Pignata L; Caligo MA; Galli A
    Mutat Res; 2015 Apr; 774():14-24. PubMed ID: 25779917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A nuclear factor other than Sp1 binds the GC-rich promoter of the gene encoding rat poly(ADP-ribose) polymerase in vitro.
    Laniel MA; Bergeron MJ; Poirier GG; Guérin SL
    Biochem Cell Biol; 1997; 75(4):427-34. PubMed ID: 9493965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The roles of PARP1 in gene control and cell differentiation.
    Ji Y; Tulin AV
    Curr Opin Genet Dev; 2010 Oct; 20(5):512-8. PubMed ID: 20591646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The histone variant mH2A1.1 interferes with transcription by down-regulating PARP-1 enzymatic activity.
    Ouararhni K; Hadj-Slimane R; Ait-Si-Ali S; Robin P; Mietton F; Harel-Bellan A; Dimitrov S; Hamiche A
    Genes Dev; 2006 Dec; 20(23):3324-36. PubMed ID: 17158748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The DNA binding and catalytic domains of poly(ADP-ribose) polymerase 1 cooperate in the regulation of chromatin structure and transcription.
    Wacker DA; Ruhl DD; Balagamwala EH; Hope KM; Zhang T; Kraus WL
    Mol Cell Biol; 2007 Nov; 27(21):7475-85. PubMed ID: 17785446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of PARP-1 as one of the transcription factors binding to the repressor element in the promoter region of COX-2.
    Lin Y; Tang X; Zhu Y; Shu T; Han X
    Arch Biochem Biophys; 2011 Jan; 505(1):123-9. PubMed ID: 20868648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific binding of poly(ADP-ribose) polymerase-1 to cruciform hairpins.
    Potaman VN; Shlyakhtenko LS; Oussatcheva EA; Lyubchenko YL; Soldatenkov VA
    J Mol Biol; 2005 May; 348(3):609-15. PubMed ID: 15826658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathophysiologic role of oxidative stress-induced poly(ADP-ribose) polymerase-1 activation: focus on cell death and transcriptional regulation.
    Erdélyi K; Bakondi E; Gergely P; Szabó C; Virág L
    Cell Mol Life Sci; 2005 Apr; 62(7-8):751-9. PubMed ID: 15868400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.