These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 12809775)

  • 1. Compositional changes of a dicalcium phosphate dihydrate cement after implantation in sheep.
    Bohner M; Theiss F; Apelt D; Hirsiger W; Houriet R; Rizzoli G; Gnos E; Frei C; Auer JA; von Rechenberg B
    Biomaterials; 2003 Sep; 24(20):3463-74. PubMed ID: 12809775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of dicalcium phosphate dihydrate cements prepared using a novel hydroxyapatite-based formulation.
    Alge DL; Santa Cruz G; Goebel WS; Chu TM
    Biomed Mater; 2009 Apr; 4(2):025016. PubMed ID: 19349655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatibility and resorption of a brushite calcium phosphate cement.
    Theiss F; Apelt D; Brand B; Kutter A; Zlinszky K; Bohner M; Matter S; Frei C; Auer JA; von Rechenberg B
    Biomaterials; 2005 Jul; 26(21):4383-94. PubMed ID: 15701367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium phosphate cements: study of the beta-tricalcium phosphate--monocalcium phosphate system.
    Mirtchi AA; Lemaitre J; Terao N
    Biomaterials; 1989 Sep; 10(7):475-80. PubMed ID: 2804235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical strength of calcium phosphate cement in vivo and in vitro.
    Yamamoto H; Niwa S; Hori M; Hattori T; Sawai K; Aoki S; Hirano M; Takeuchi H
    Biomaterials; 1998 Sep; 19(17):1587-91. PubMed ID: 9830984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of DCPD cement chemistry on degradation properties and cytocompatibility: comparison of MCPM/β-TCP and MCPM/HA formulations.
    Alge DL; Goebel WS; Chu TM
    Biomed Mater; 2013 Apr; 8(2):025010. PubMed ID: 23428798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resorption of apatite-wollastonite containing glass-ceramic and beta-tricalcium phosphate in vivo.
    Teramoto H; Kawai A; Sugihara S; Yoshida A; Inoue H
    Acta Med Okayama; 2005 Oct; 59(5):201-7. PubMed ID: 16286959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman microspectrometry studies of brushite cement: in vivo evolution in a sheep model.
    Penel G; Leroy N; Van Landuyt P; Flautre B; Hardouin P; Lemaître J; Leroy G
    Bone; 1999 Aug; 25(2 Suppl):81S-84S. PubMed ID: 10458282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-term implantation effects of a DCPD-based calcium phosphate cement.
    Frayssinet P; Gineste L; Conte P; Fages J; Rouquet N
    Biomaterials; 1998 Jun; 19(11-12):971-7. PubMed ID: 9692795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing the physicochemical properties of dicalcium phosphate dihydrate (DCPD) and polymeric DCPD (P-DCPD) cement particles.
    Barua R; Daly-Seiler CS; Chenreghanianzabi Y; Markel D; Li Y; Zhou M; Ren W
    J Biomed Mater Res B Appl Biomater; 2021 Oct; 109(10):1644-1655. PubMed ID: 33655715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transforming growth factor-beta1 incorporation in an alpha-tricalcium phosphate/dicalcium phosphate dihydrate/tetracalcium phosphate monoxide cement: release characteristics and physicochemical properties.
    Blom EJ; Klein-Nulend J; Wolke JG; Kurashina K; van Waas MA; Burger EH
    Biomaterials; 2002 Feb; 23(4):1261-8. PubMed ID: 11794323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of pullulan on the biomechanical and anti-collapse properties of dicalcium phosphate dihydrate bone cement.
    Xi W; Ding Z; Ren H; Chen H; Yan Y; Zhang Q
    J Biomater Appl; 2021 Nov; 36(5):757-771. PubMed ID: 34074159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. (31)P Solid-State NMR study of the chemical setting process of a dual-paste injectable brushite cements.
    Legrand AP; Sfihi H; Lequeux N; Lemaître J
    J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):46-54. PubMed ID: 19365821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of four biodegradable, injectable bone cements in an experimental drill hole model in sheep.
    von Rechenberg B; Génot OR; Nuss K; Galuppo L; Fulmer M; Jacobson E; Kronen P; Zlinszky K; Auer JA
    Eur J Pharm Biopharm; 2013 Sep; 85(1):130-8. PubMed ID: 23680585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Setting mechanism of a new injectable Dicalcium Phosphate Dihydrate (DCPD) forming cement.
    Ren W; Song W; Yurgelevic S; Markel DC
    J Mech Behav Biomed Mater; 2018 Mar; 79():226-234. PubMed ID: 29331590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of a biomimetic bone cement: role of DCPD.
    Panzavolta S; Bracci B; Rubini K; Bigi A
    J Inorg Biochem; 2011 Aug; 105(8):1060-5. PubMed ID: 21726768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of citric acid on setting reaction and tissue response to β-TCP granular cement.
    Fukuda N; Tsuru K; Mori Y; Ishikawa K
    Biomed Mater; 2017 Feb; 12(1):015027. PubMed ID: 28233758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-setting, bioactive, and biodegradable TTCP-DCPD apatite cement.
    Hamanishi C; Kitamoto K; Ohura K; Tanaka S; Doi Y
    J Biomed Mater Res; 1996 Nov; 32(3):383-9. PubMed ID: 8897143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo behavior of three different injectable hydraulic calcium phosphate cements.
    Apelt D; Theiss F; El-Warrak AO; Zlinszky K; Bettschart-Wolfisberger R; Bohner M; Matter S; Auer JA; von Rechenberg B
    Biomaterials; 2004; 25(7-8):1439-51. PubMed ID: 14643619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of hydroxyapatite in new calcium phosphate cements.
    Takagi S; Chow LC; Ishikawa K
    Biomaterials; 1998 Sep; 19(17):1593-9. PubMed ID: 9830985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.