BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 12810301)

  • 1. Carbon dioxide extraction of residual solvents in poly(lactide-co-glycolide) microparticles.
    Herberger J; Murphy K; Munyakazi L; Cordia J; Westhaus E
    J Control Release; 2003 Jun; 90(2):181-95. PubMed ID: 12810301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of large porous deslorelin-PLGA microparticles with reduced residual solvent and cellular uptake using a supercritical carbon dioxide process.
    Koushik K; Kompella UB
    Pharm Res; 2004 Mar; 21(3):524-35. PubMed ID: 15070105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface analysis of sequential semi-solvent vapor impact (SAVI) for studying microstructural arrangements of poly(lactide-co-glycolide) microparticles.
    Garner J; Skidmore S; Hadar J; Park H; Park K; Qin B; Wang Y
    J Control Release; 2022 Oct; 350():600-612. PubMed ID: 36057396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of drug loaded microparticles by the use of supercritical gases with the aerosol solvent extraction system (ASES) process.
    Bleich J; Müller BW
    J Microencapsul; 1996; 13(2):131-9. PubMed ID: 8999119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Residual solvents in biodegradable microparticles. Influence of process parameters on the residual solvent in microparticles produced by the aerosol solvent extraction system (ASES) process.
    Ruchatz F; Kleinebudde P; Muller BW
    J Pharm Sci; 1997 Jan; 86(1):101-5. PubMed ID: 9002467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation, characterization and in vitro cytotoxicity of indomethacin-loaded PLLA/PLGA microparticles using supercritical CO2 technique.
    Kang Y; Wu J; Yin G; Huang Z; Yao Y; Liao X; Chen A; Pu X; Liao L
    Eur J Pharm Biopharm; 2008 Sep; 70(1):85-97. PubMed ID: 18495445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(lactide-co-glycolide) microsphere formulations of darbepoetin alfa: spray drying is an alternative to encapsulation by spray-freeze drying.
    Burke PA; Klumb LA; Herberger JD; Nguyen XC; Harrell RA; Zordich M
    Pharm Res; 2004 Mar; 21(3):500-6. PubMed ID: 15070102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymeric microspheres prepared by spraying into compressed carbon dioxide.
    Bodmeier R; Wang H; Dixon DJ; Mawson S; Johnston KP
    Pharm Res; 1995 Aug; 12(8):1211-7. PubMed ID: 7494836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation, characterization, and in vitro release studies of insulin-loaded double-walled poly(lactide-co-glycolide) microspheres.
    Ansary RH; Rahman MM; Awang MB; Katas H; Hadi H; Doolaanea AA
    Drug Deliv Transl Res; 2016 Jun; 6(3):308-18. PubMed ID: 26817478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Hansen solubility parameters for understanding and prediction of drug distribution in microspheres.
    Vay K; Scheler S; Friess W
    Int J Pharm; 2011 Sep; 416(1):202-9. PubMed ID: 21745557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of PEG in PEG-PLGA microspheres on particle properties and protein release.
    Buske J; König C; Bassarab S; Lamprecht A; Mühlau S; Wagner KG
    Eur J Pharm Biopharm; 2012 May; 81(1):57-63. PubMed ID: 22306701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of polyvinyl alcohol on the surface of poly(D, L-lactide-co-glycolide) microparticles prepared by solvent evaporation method: effect of particle size and PVA concentration.
    Lee SC; Oh JT; Jang MH; Chung SI
    J Control Release; 1999 May; 59(2):123-32. PubMed ID: 10332048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of water on exenatide acylation in poly(lactide-co-glycolide) microspheres.
    Liang R; Li X; Shi Y; Wang A; Sun K; Liu W; Li Y
    Int J Pharm; 2013 Sep; 454(1):344-53. PubMed ID: 23872225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the microencapsulation method and peptide loading on poly(lactic acid) and poly(lactic-co-glycolic acid) degradation during in vitro testing.
    Witschi C; Doelker E
    J Control Release; 1998 Feb; 51(2-3):327-41. PubMed ID: 9685930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon dioxide extraction of residual chloroform from biodegradable polymers.
    Koegler WS; Patrick C; Cima MJ; Griffith LG
    J Biomed Mater Res; 2002; 63(5):567-76. PubMed ID: 12209902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The preparation and characterization of poly(lactide-co-glycolide) microparticles. II. The entrapment of a model protein using a (water-in-oil)-in-water emulsion solvent evaporation technique.
    Jeffery H; Davis SS; O'Hagan DT
    Pharm Res; 1993 Mar; 10(3):362-8. PubMed ID: 8464808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel in situ forming drug delivery system for controlled parenteral drug delivery.
    Kranz H; Bodmeier R
    Int J Pharm; 2007 Mar; 332(1-2):107-14. PubMed ID: 17084049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological and degradation studies of sirolimus-containing poly(lactide-co-glycolide) discs.
    Ro AJ; Falotico R; Davé V
    J Biomed Mater Res B Appl Biomater; 2012 Apr; 100(3):767-77. PubMed ID: 22121085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Process variable implications for residual solvent removal and polymer morphology in the formation of gentamycin-loaded poly (L-lactide) microparticles.
    Falk RF; Randolph TW
    Pharm Res; 1998 Aug; 15(8):1233-7. PubMed ID: 9706054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of uniform poly(d,l-lactide) and poly(d,l-lactide-co-glycolide) microspheres using a microfluidic chip for comparison.
    Yang CH; Huang KS; Grumezescu AM; Wang CY; Tzeng SC; Chen SY; Lin YH; Lin YS
    Electrophoresis; 2014 Feb; 35(2-3):316-22. PubMed ID: 23857679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.