BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 12811467)

  • 1. Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway.
    Harhangi HR; Akhmanova AS; Emmens R; van der Drift C; de Laat WT; van Dijken JP; Jetten MS; Pronk JT; Op den Camp HJ
    Arch Microbiol; 2003 Aug; 180(2):134-41. PubMed ID: 12811467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of an inactive xylose isomerase into a functional enzyme by co-expression of GroEL-GroES chaperonins in Saccharomyces cerevisiae.
    Temer B; Dos Santos LV; Negri VA; Galhardo JP; Magalhães PHM; José J; Marschalk C; Corrêa TLR; Carazzolle MF; Pereira GAG
    BMC Biotechnol; 2017 Sep; 17(1):71. PubMed ID: 28888227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of a xylose metabolic pathway in Corynebacterium glutamicum.
    Kawaguchi H; Vertès AA; Okino S; Inui M; Yukawa H
    Appl Environ Microbiol; 2006 May; 72(5):3418-28. PubMed ID: 16672486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From
    Topaloğlu A; Esen Ö; Turanlı-Yıldız B; Arslan M; Çakar ZP
    J Fungi (Basel); 2023 Sep; 9(10):. PubMed ID: 37888240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-canonical D-xylose and L-arabinose metabolism via D-arabitol in the oleaginous yeast Rhodosporidium toruloides.
    Adamczyk PA; Coradetti ST; Gladden JM
    Microb Cell Fact; 2023 Aug; 22(1):145. PubMed ID: 37537595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Big data mining, rational modification, and ancestral sequence reconstruction inferred multiple xylose isomerases for biorefinery.
    Chen S; Xu Z; Ding B; Zhang Y; Liu S; Cai C; Li M; Dale BE; Jin M
    Sci Adv; 2023 Feb; 9(5):eadd8835. PubMed ID: 36724227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Oxygen-Independent Pathways for Pyridine Nucleotide and Coenzyme A Synthesis in Anaerobic Fungi by Expression of Candidate Genes in Yeast.
    Perli T; Vos AM; Bouwknegt J; Dekker WJC; Wiersma SJ; Mooiman C; Ortiz-Merino RA; Daran JM; Pronk JT
    mBio; 2021 Jun; 12(3):e0096721. PubMed ID: 34154398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel D-xylose isomerase from the gut of the wood feeding beetle Odontotaenius disjunctus efficiently expressed in Saccharomyces cerevisiae.
    Silva PC; Ceja-Navarro JA; Azevedo F; Karaoz U; Brodie EL; Johansson B
    Sci Rep; 2021 Feb; 11(1):4766. PubMed ID: 33637780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered
    Cunha JT; Soares PO; Baptista SL; Costa CE; Domingues L
    Bioengineered; 2020 Dec; 11(1):883-903. PubMed ID: 32799606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering microbial pathways for production of bio-based chemicals from lignocellulosic sugars: current status and perspectives.
    Francois JM; Alkim C; Morin N
    Biotechnol Biofuels; 2020; 13():118. PubMed ID: 32670405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-based directed evolution improves
    Lee M; Rozeboom HJ; Keuning E; de Waal P; Janssen DB
    Biotechnol Biofuels; 2020; 13():5. PubMed ID: 31938040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular evolutionary engineering of xylose isomerase to improve its catalytic activity and performance of micro-aerobic glucose/xylose co-fermentation in
    Seike T; Kobayashi Y; Sahara T; Ohgiya S; Kamagata Y; Fujimori KE
    Biotechnol Biofuels; 2019; 12():139. PubMed ID: 31178927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Horizontal Gene Transfer as an Indispensable Driver for Evolution of Neocallimastigomycota into a Distinct Gut-Dwelling Fungal Lineage.
    Murphy CL; Youssef NH; Hanafy RA; Couger MB; Stajich JE; Wang Y; Baker K; Dagar SS; Griffith GW; Farag IF; Callaghan TM; Elshahed MS
    Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31126947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing the Co-utilization of Biomass-Derived Mixed Sugars by Yeasts.
    Gao M; Ploessl D; Shao Z
    Front Microbiol; 2018; 9():3264. PubMed ID: 30723464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal Dependence of the Xylose Isomerase from Piromyces sp. E2 Explored by Activity Profiling and Protein Crystallography.
    Lee M; Rozeboom HJ; de Waal PP; de Jong RM; Dudek HM; Janssen DB
    Biochemistry; 2017 Nov; 56(45):5991-6005. PubMed ID: 29045784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation.
    Jansen MLA; Bracher JM; Papapetridis I; Verhoeven MD; de Bruijn H; de Waal PP; van Maris AJA; Klaassen P; Pronk JT
    FEMS Yeast Res; 2017 Aug; 17(5):. PubMed ID: 28899031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening and evolution of a novel protist xylose isomerase from the termite
    Katahira S; Muramoto N; Moriya S; Nagura R; Tada N; Yasutani N; Ohkuma M; Onishi T; Tokuhiro K
    Biotechnol Biofuels; 2017; 10():203. PubMed ID: 28852424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective.
    Kwak S; Jin YS
    Microb Cell Fact; 2017 May; 16(1):82. PubMed ID: 28494761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis.
    Verhoeven MD; Lee M; Kamoen L; van den Broek M; Janssen DB; Daran JG; van Maris AJ; Pronk JT
    Sci Rep; 2017 Apr; 7():46155. PubMed ID: 28401919
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.