BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 12811467)

  • 21. Metal Dependence of the Xylose Isomerase from Piromyces sp. E2 Explored by Activity Profiling and Protein Crystallography.
    Lee M; Rozeboom HJ; de Waal PP; de Jong RM; Dudek HM; Janssen DB
    Biochemistry; 2017 Nov; 56(45):5991-6005. PubMed ID: 29045784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae.
    Zhou H; Cheng JS; Wang BL; Fink GR; Stephanopoulos G
    Metab Eng; 2012 Nov; 14(6):611-22. PubMed ID: 22921355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component.
    van Maris AJ; Winkler AA; Kuyper M; de Laat WT; van Dijken JP; Pronk JT
    Adv Biochem Eng Biotechnol; 2007; 108():179-204. PubMed ID: 17846724
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP(+)-dependent xylitol dehydrogenase, and xylulokinase.
    Matsushika A; Watanabe S; Kodaki T; Makino K; Sawayama S
    J Biosci Bioeng; 2008 Mar; 105(3):296-9. PubMed ID: 18397783
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification and characterization of D-xylulokinase from the D-xylose-fermenting fungus, Mucor circinelloides.
    Komeda H; Yamasaki-Yashiki S; Hoshino K; Asano Y
    FEMS Microbiol Lett; 2014 Nov; 360(1):51-61. PubMed ID: 25163569
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cloning and analysis of the xylAB operon and characterization of xylose isomerase from Thermoanaerobacter ethanolicus.
    Fan L; Zhang Y; Qu W; Wang J; Shao W
    Biotechnol Lett; 2011 Mar; 33(3):593-8. PubMed ID: 21072563
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient bioethanol production from xylose by recombinant saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity.
    Matsushika A; Sawayama S
    J Biosci Bioeng; 2008 Sep; 106(3):306-9. PubMed ID: 18930011
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes.
    Träff KL; Otero Cordero RR; van Zyl WH; Hahn-Hägerdal B
    Appl Environ Microbiol; 2001 Dec; 67(12):5668-74. PubMed ID: 11722921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E.
    Boxma B; Voncken F; Jannink S; van Alen T; Akhmanova A; van Weelden SW; van Hellemond JJ; Ricard G; Huynen M; Tielens AG; Hackstein JH
    Mol Microbiol; 2004 Mar; 51(5):1389-99. PubMed ID: 14982632
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deletion of xylR gene enhances expression of xylose isomerase in Streptomyces lividans TK24.
    Heo GY; Kim WC; Joo GJ; Kwak YY; Shin JH; Roh DH; Park HD; Rhee IK
    J Microbiol Biotechnol; 2008 May; 18(5):837-44. PubMed ID: 18633279
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization and evolution of xylose isomerase screened from the bovine rumen metagenome in Saccharomyces cerevisiae.
    Hou J; Shen Y; Jiao C; Ge R; Zhang X; Bao X
    J Biosci Bioeng; 2016 Feb; 121(2):160-5. PubMed ID: 26160406
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae.
    Lee SM; Jellison T; Alper HS
    Appl Environ Microbiol; 2012 Aug; 78(16):5708-16. PubMed ID: 22685138
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain.
    Pitkänen JP; Rintala E; Aristidou A; Ruohonen L; Penttilä M
    Appl Microbiol Biotechnol; 2005 Jun; 67(6):827-37. PubMed ID: 15630585
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cloning, expression and characterization of xylose isomerase, XylA, from Caldanaerobacter subterraneus subsp. yonseiensis.
    Kim BC; Yu SN; Kim KY; Lee JS; Pyun YR; Ahn SC
    Biotechnol Lett; 2010 Jul; 32(7):929-33. PubMed ID: 20349329
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The sequence of xylose isomerase gene from Streptomyces diastaticus No. 7 M1033.
    Wang Y; Huang Z; Dai X; Liu J; Cui T; Niu L; Wang C; Xu X
    Chin J Biotechnol; 1994; 10(2):97-103. PubMed ID: 7803695
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering of Saccharomyces cerevisiae to utilize xylan as a sole carbohydrate source by co-expression of an endoxylanase, xylosidase and a bacterial xylose isomerase.
    Mert MJ; la Grange DC; Rose SH; van Zyl WH
    J Ind Microbiol Biotechnol; 2016 Apr; 43(4):431-40. PubMed ID: 26749525
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genomic analysis of a xylose operon and characterization of novel xylose isomerase and xylulokinase from Bacillus coagulans NL01.
    Zheng Z; Lin X; Jiang T; Ye W; Ouyang J
    Biotechnol Lett; 2016 Aug; 38(8):1331-9. PubMed ID: 27206341
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression of xylA genes encoding xylose isomerases from Escherichia coli and Streptomyces coelicolor in the methylotrophic yeast Hansenula polymorpha.
    Voronovsky AY; Ryabova OB; Verba OV; Ishchuk OP; Dmytruk KV; Sibirny AA
    FEMS Yeast Res; 2005 Nov; 5(11):1055-62. PubMed ID: 16243589
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Glucose isomerase of S. violaceoniger. Fundamental and applied aspects].
    Bejar S; Belghith K; Ellouz R
    Arch Inst Pasteur Tunis; 1994; 71(3-4):407-17. PubMed ID: 8801836
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Display of Clostridium cellulovorans xylose isomerase on the cell surface of Saccharomyces cerevisiae and its direct application to xylose fermentation.
    Ota M; Sakuragi H; Morisaka H; Kuroda K; Miyake H; Tamaru Y; Ueda M
    Biotechnol Prog; 2013; 29(2):346-51. PubMed ID: 23359609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.