These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 1281147)

  • 1. Single-base mutations at position 2661 of Escherichia coli 23S rRNA increase efficiency of translational proofreading.
    Melançon P; Tapprich WE; Brakier-Gingras L
    J Bacteriol; 1992 Dec; 174(24):7896-901. PubMed ID: 1281147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Base 2661 in Escherichia coli 23S rRNA influences the binding of elongation factor Tu during protein synthesis in vivo.
    Tapio S; Isaksson LA
    Eur J Biochem; 1991 Dec; 202(3):981-4. PubMed ID: 1765106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mutation in the 530 loop of Escherichia coli 16S ribosomal RNA causes resistance to streptomycin.
    Melançon P; Lemieux C; Brakier-Gingras L
    Nucleic Acids Res; 1988 Oct; 16(20):9631-9. PubMed ID: 3054810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single base mutation at position 2661 in E. coli 23S ribosomal RNA affects the binding of ternary complex to the ribosome.
    Tapprich WE; Dahlberg AE
    EMBO J; 1990 Aug; 9(8):2649-55. PubMed ID: 2196177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel mutants of 23S RNA: characterization of functional properties.
    Saarma U; Remme J
    Nucleic Acids Res; 1992 Jun; 20(12):3147-52. PubMed ID: 1377819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The phenotype of mutations of the base-pair C2658.G2663 that closes the tetraloop in the sarcin/ricin domain of Escherichia coli 23 S ribosomal RNA.
    Chan YL; Sitikov AS; Wool IG
    J Mol Biol; 2000 May; 298(5):795-805. PubMed ID: 10801349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The involvement of base 1054 in 16S rRNA for UGA stop codon dependent translational termination.
    Hänfler A; Kleuvers B; Göringer HU
    Nucleic Acids Res; 1990 Oct; 18(19):5625-32. PubMed ID: 2216755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational studies on the alpha-sarcin loop of Escherichia coli 23S ribosomal RNA.
    Marchant A; Hartley MR
    Eur J Biochem; 1994 Nov; 226(1):141-7. PubMed ID: 7957241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The control of accuracy during protein synthesis in Escherichia coli and perturbations of this control by streptomycin, neomycin, or ribosomal mutations.
    Brakier-Gingras L; Phoenix P
    Can J Biochem Cell Biol; 1984 May; 62(5):231-44. PubMed ID: 6203630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations in the 915 region of Escherichia coli 16S ribosomal RNA reduce the binding of streptomycin to the ribosome.
    Leclerc D; Melançon P; Brakier-Gingras L
    Nucleic Acids Res; 1991 Jul; 19(14):3973-7. PubMed ID: 1713666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is efficiency of suppressor tRNAs controlled at the level of ribosomal proofreading in vivo?
    Faxén M; Kirsebom LA; Isaksson LA
    J Bacteriol; 1988 Aug; 170(8):3756-60. PubMed ID: 3042761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonsense suppressor and antisuppressor mutations at the 1409-1491 base pair in the decoding region of Escherichia coli 16S rRNA.
    Gregory ST; Dahlberg AE
    Nucleic Acids Res; 1995 Nov; 23(21):4234-8. PubMed ID: 7501440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UGA suppression by a mutant RNA of the large ribosomal subunit.
    Jemiolo DK; Pagel FT; Murgola EJ
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12309-13. PubMed ID: 8618891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling of rRNA transcription and ribosomal assembly in vivo. Formation of active ribosomal subunits in Escherichia coli requires transcription of rRNA genes by host RNA polymerase which cannot be replaced by bacteriophage T7 RNA polymerase.
    Lewicki BT; Margus T; Remme J; Nierhaus KH
    J Mol Biol; 1993 Jun; 231(3):581-93. PubMed ID: 8515441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations at U2555, a tRNA-protected base in 23S rRNA, affect translational fidelity.
    O'Connor M; Dahlberg AE
    Proc Natl Acad Sci U S A; 1993 Oct; 90(19):9214-8. PubMed ID: 8415679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of base identity and base pairing on the function of the alpha-sarcin loop of 23S rRNA.
    O'Connor M; Dahlberg AE
    Nucleic Acids Res; 1996 Jul; 24(14):2701-5. PubMed ID: 8758999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective perturbation of G530 of 16 S rRNA by translational miscoding agents and a streptomycin-dependence mutation in protein S12.
    Powers T; Noller HF
    J Mol Biol; 1994 Jan; 235(1):156-72. PubMed ID: 8289238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. E. coli ribosomes with a C912 to U base change in the 16S rRNA are streptomycin resistant.
    Montandon PE; Wagner R; Stutz E
    EMBO J; 1986 Dec; 5(13):3705-8. PubMed ID: 3104030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations in 23 S ribosomal RNA perturb transfer RNA selection and can lead to streptomycin dependence.
    Bilgin N; Ehrenberg M
    J Mol Biol; 1994 Jan; 235(3):813-24. PubMed ID: 7507174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aminoglycoside antibiotics mediate context-dependent suppression of termination codons in a mammalian translation system.
    Manuvakhova M; Keeling K; Bedwell DM
    RNA; 2000 Jul; 6(7):1044-55. PubMed ID: 10917599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.