These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 1281147)

  • 21. Analysis of streptomycin-resistance of Escherichia coli mutants.
    Bonny C; Montandon PE; Marc-Martin S; Stutz E
    Biochim Biophys Acta; 1991 Jun; 1089(2):213-9. PubMed ID: 1711372
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neomycin is more efficient than streptomycin in suppressing frameshift mutations.
    Phoenix P; Gravel M; Herrington MB; Brakier-Gingras L
    Can J Genet Cytol; 1985 Dec; 27(6):776-9. PubMed ID: 3937597
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ribosomal intersubunit bridge B2a is involved in factor-dependent translation initiation and translational processivity.
    Kipper K; Hetényi C; Sild S; Remme J; Liiv A
    J Mol Biol; 2009 Jan; 385(2):405-22. PubMed ID: 19007789
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Involvement of ribosomal protein L7/L12 in control of translational accuracy.
    Kirsebom LA; Isaksson LA
    Proc Natl Acad Sci U S A; 1985 Feb; 82(3):717-21. PubMed ID: 3883346
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Increased ribosomal accuracy increases a programmed translational frameshift in Escherichia coli.
    Sipley J; Goldman E
    Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2315-9. PubMed ID: 8460140
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Positions 13 and 914 in Escherichia coli 16S ribosomal RNA are involved in the control of translational accuracy.
    Pinard R; Côté M; Payant C; Brakier-Gingras L
    Nucleic Acids Res; 1994 Feb; 22(4):619-24. PubMed ID: 7510397
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutations at three sites in the Escherichia coli 23S ribosomal RNA binding region for protein L11 cause UGA-specific suppression and conditional lethality.
    Murgola EJ; Xu W; Arkov AL
    Nucleic Acids Symp Ser; 1995; (33):70-2. PubMed ID: 8643403
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The 5' proximal helix of 16S rRNA is involved in the binding of streptomycin to the ribosome.
    Pinard R; Payant C; Melançon P; Brakier-Gingras L
    FASEB J; 1993 Jan; 7(1):173-6. PubMed ID: 7678560
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mutations at position A960 of E. coli 23 S ribosomal RNA influence the structure of 5 S ribosomal RNA and the peptidyltransferase region of 23 S ribosomal RNA.
    Sergiev PV; Bogdanov AA; Dahlberg AE; Dontsova O
    J Mol Biol; 2000 Jun; 299(2):379-89. PubMed ID: 10860746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence that the G2661 region of 23S rRNA is located at the ribosomal binding sites of both elongation factors.
    Hausner TP; Atmadja J; Nierhaus KH
    Biochimie; 1987 Sep; 69(9):911-23. PubMed ID: 3126829
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Covariance of complementary rRNA loop nucleotides does not necessarily represent functional pseudoknot formation in vivo.
    Chernyaeva NS; Murgola EJ
    J Bacteriol; 2000 Oct; 182(20):5671-5. PubMed ID: 11004163
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Mutations in the Escherichia coli 23S rRNA increase the rate of peptidyl-tRNA dissociation from the ribosome].
    Maĭvali U; Saarma U; Remme Ia
    Mol Biol (Mosk); 2001; 35(4):666-71. PubMed ID: 11524953
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Affinity purification of ribosomes with a lethal G2655C mutation in 23 S rRNA that affects the translocation.
    Leonov AA; Sergiev PV; Bogdanov AA; Brimacombe R; Dontsova OA
    J Biol Chem; 2003 Jul; 278(28):25664-70. PubMed ID: 12730236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutations in the peptidyl transferase region of E. coli 23S rRNA affecting translational accuracy.
    Gregory ST; Lieberman KR; Dahlberg AE
    Nucleic Acids Res; 1994 Feb; 22(3):279-84. PubMed ID: 8127663
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Function of the ribosomal E-site: a mutagenesis study.
    Sergiev PV; Lesnyak DV; Kiparisov SV; Burakovsky DE; Leonov AA; Bogdanov AA; Brimacombe R; Dontsova OA
    Nucleic Acids Res; 2005; 33(18):6048-56. PubMed ID: 16243787
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction between the ribosomal subunits: 16S rRNA suppressors of the lethal DeltaA1916 mutation in the 23S rRNA of Escherichia coli.
    O'connor M
    Mol Genet Genomics; 2007 Sep; 278(3):307-15. PubMed ID: 17564727
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Correlation between poly(U) misreading and poly(dT) translation efficiency in E coli cell-free systems.
    Potapov AP; Groisman IS; El'skaya AV
    Biochimie; 1990 May; 72(5):345-9. PubMed ID: 2119818
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Point mutations in the leader boxA of a plasmid-encoded Escherichia coli rrnB operon cause defective antitermination in vivo.
    Heinrich T; Condon C; Pfeiffer T; Hartmann RK
    J Bacteriol; 1995 Jul; 177(13):3793-800. PubMed ID: 7601845
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A single base substitution in 16S ribosomal RNA suppresses streptomycin dependence and increases the frequency of translational errors.
    Allen PN; Noller HF
    Cell; 1991 Jul; 66(1):141-8. PubMed ID: 2070415
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variety of nonsense suppressor phenotypes associated with mutational changes at conserved sites in Escherichia coli ribosomal RNA.
    Murgola EJ; Pagel FT; Hijazi KA; Arkov AL; Xu W; Zhao SQ
    Biochem Cell Biol; 1995; 73(11-12):925-31. PubMed ID: 8722008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.