These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 12812441)

  • 1. Uniqueness and reconstruction in magnetic resonance-electrical impedance tomography (MR-EIT).
    Ider YZ; Onart S; Lionheart WR
    Physiol Meas; 2003 May; 24(2):591-604. PubMed ID: 12812441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induced current magnetic resonance-electrical impedance tomography.
    Ozparlak L; Ider YZ
    Physiol Meas; 2005 Apr; 26(2):S289-305. PubMed ID: 15798242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lobe based image reconstruction in Electrical Impedance Tomography.
    Schullcke B; Gong B; Krueger-Ziolek S; Tawhai M; Adler A; Mueller-Lisse U; Moeller K
    Med Phys; 2017 Feb; 44(2):426-436. PubMed ID: 28121374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Algebraic reconstruction for 3D magnetic resonance-electrical impedance tomography (MREIT) using one component of magnetic flux density.
    Ider YZ; Onart S
    Physiol Meas; 2004 Feb; 25(1):281-94. PubMed ID: 15005322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinguishability for magnetic resonance-electrical impedance tomography (MR-EIT).
    Altunel H; Eyüboğlu BM; Köksal A
    Phys Med Biol; 2007 Jan; 52(2):375-87. PubMed ID: 17202621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental results for 2D magnetic resonance electrical impedance tomography (MR-EIT) using magnetic flux density in one direction.
    Birgül O; Eyüboğlu BM; Ider YZ
    Phys Med Biol; 2003 Nov; 48(21):3485-504. PubMed ID: 14653558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current constrained voltage scaled reconstruction (CCVSR) algorithm for MR-EIT and its performance with different probing current patterns.
    Birgül O; Eyüboğlu BM; Ider YZ
    Phys Med Biol; 2003 Mar; 48(5):653-71. PubMed ID: 12696801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induced current electrical impedance tomography system: experimental results and numerical simulations.
    Zlochiver S; Radai MM; Abboud S; Rosenfeld M; Dong XZ; Liu RG; You FS; Xiang HY; Shi XT
    Physiol Meas; 2004 Feb; 25(1):239-55. PubMed ID: 15005319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a microscopic electrical impedance tomography system for 3D continuous non-destructive monitoring of tissue culture.
    Lee EJ; Wi H; McEwan AL; Farooq A; Sohal H; Woo EJ; Seo JK; Oh TI
    Biomed Eng Online; 2014 Oct; 13():142. PubMed ID: 25286865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element implementation of Maxwell's equations for image reconstruction in electrical impedance tomography.
    Soni NK; Paulsen KD; Dehghani H; Hartov A
    IEEE Trans Med Imaging; 2006 Jan; 25(1):55-61. PubMed ID: 16398414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging.
    Woo EJ; Seo JK
    Physiol Meas; 2008 Oct; 29(10):R1-26. PubMed ID: 18799834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction of the shape of conductivity spectra using differential multi-frequency magnetic induction tomography.
    Brunner P; Merwa R; Missner A; Rosell J; Hollaus K; Scharfetter H
    Physiol Meas; 2006 May; 27(5):S237-48. PubMed ID: 16636414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. J-substitution algorithm in magnetic resonance electrical impedance tomography (MREIT): phantom experiments for static resistivity images.
    Khang HS; Lee BI; Oh SH; Woo EJ; Lee SY; Cho MH; Kwon O; Yoon JR; Seo JK
    IEEE Trans Med Imaging; 2002 Jun; 21(6):695-702. PubMed ID: 12166867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical conductivity imaging by magnetic resonance electrical impedance tomography (MREIT).
    Oh SH; Han JY; Lee SY; Cho MH; Lee BI; Woo EJ
    Magn Reson Med; 2003 Oct; 50(4):875-8. PubMed ID: 14523975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite-element method in electrical impedance tomography.
    Woo EJ; Hua P; Webster JG; Tompkins WJ
    Med Biol Eng Comput; 1994 Sep; 32(5):530-6. PubMed ID: 7845069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new algorithm to reconstruct EIT images: Node-Back-Projection Algorithm.
    Zhang J; Yan W; Xu G; Zhao Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4390-3. PubMed ID: 18002977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical impedance tomography reconstruction algorithm based on general inversion theory and finite element method.
    Mengxing T; Xiuzhen D; Mingxin Q; Feng F; Xuetao S; Fusheng Y
    Med Biol Eng Comput; 1998 Jul; 36(4):395-8. PubMed ID: 10198520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic resonance electrical impedance tomography (MREIT): simulation study of J-substitution algorithm.
    Kwon O; Woo EJ; Yoon JR; Seo JK
    IEEE Trans Biomed Eng; 2002 Feb; 49(2):160-7. PubMed ID: 12066883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional electrical impedance tomography.
    Metherall P; Barber DC; Smallwood RH; Brown BH
    Nature; 1996 Apr; 380(6574):509-12. PubMed ID: 8606768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional forward solver and its performance analysis for magnetic resonance electrical impedance tomography (MREIT) using recessed electrodes.
    Lee BI; Oh SH; Woo EJ; Lee SY; Cho MH; Kwon O; Seo JK; Lee JY; Baek WS
    Phys Med Biol; 2003 Jul; 48(13):1971-86. PubMed ID: 12884929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.