These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 12812494)

  • 1. Comparisons of phosphorothioate with phosphate transfer reactions for a monoester, diester, and triester: isotope effect studies.
    Catrina IE; Hengge AC
    J Am Chem Soc; 2003 Jun; 125(25):7546-52. PubMed ID: 12812494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition state differences in hydrolysis reactions of alkyl versus aryl phosphate monoester monoanions.
    Grzyska PK; Czyryca PG; Purcell J; Hengge AC
    J Am Chem Soc; 2003 Oct; 125(43):13106-11. PubMed ID: 14570483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The thermodynamics of phosphate versus phosphorothioate ester hydrolysis.
    Purcell J; Hengge AC
    J Org Chem; 2005 Oct; 70(21):8437-42. PubMed ID: 16209589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic studies of protein tyrosine phosphatases YopH and Cdc25A with m-nitrobenzyl phosphate.
    McCain DF; Grzyska PK; Wu L; Hengge AC; Zhang ZY
    Biochemistry; 2004 Jun; 43(25):8256-64. PubMed ID: 15209522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examination of the transition state of the low-molecular mass small tyrosine phosphatase 1. Comparisons with other protein phosphatases.
    Hengge AC; Zhao Y; Wu L; Zhang ZY
    Biochemistry; 1997 Jun; 36(25):7928-36. PubMed ID: 9201938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered mechanisms of reactions of phosphate esters bridging a dinuclear metal center.
    Humphry T; Forconi M; Williams NH; Hengge AC
    J Am Chem Soc; 2004 Sep; 126(38):11864-9. PubMed ID: 15382921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition-state structures for the native dual-specific phosphatase VHR and D92N and S131A mutants. Contributions to the driving force for catalysis.
    Hengge AC; Denu JM; Dixon JE
    Biochemistry; 1996 Jun; 35(22):7084-92. PubMed ID: 8679534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic origin of the increased rate of hydrolysis of phosphate and phosphorothioate esters in DMSO/water mixtures.
    Sorensen-Stowell K; Hengge AC
    J Org Chem; 2006 Sep; 71(19):7180-4. PubMed ID: 16958510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-catalyzed phosphodiester cleavage: secondary 18O isotope effects as an indicator of mechanism.
    Rawlings J; Cleland WW; Hengge AC
    J Am Chem Soc; 2006 Dec; 128(51):17120-5. PubMed ID: 17177465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secondary 18O isotope effects as a tool for studying reactions of phosphate mono-, di-, and triesters.
    Cleland WW
    FASEB J; 1990 Aug; 4(11):2899-905. PubMed ID: 2199287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isotope effect studies on the calcineurin phosphoryl-transfer reaction: transition state structure and effect of calmodulin and Mn2+.
    Hengge AC; Martin BL
    Biochemistry; 1997 Aug; 36(33):10185-91. PubMed ID: 9254616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An altered mechanism of hydrolysis for a metal-complexed phosphate diester.
    Humphry T; Forconi M; Williams NH; Hengge AC
    J Am Chem Soc; 2002 Dec; 124(50):14860-1. PubMed ID: 12475323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isotope effects and medium effects on sulfuryl transfer reactions.
    Hoff RH; Larsen P; Hengge AC
    J Am Chem Soc; 2001 Sep; 123(38):9338-44. PubMed ID: 11562216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the reaction progress of calcineurin with Mn2+ and Mg2+.
    Martin BL; Jurado LA; Hengge AC
    Biochemistry; 1999 Mar; 38(11):3386-92. PubMed ID: 10079083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutation of Arg-166 of alkaline phosphatase alters the thio effect but not the transition state for phosphoryl transfer. Implications for the interpretation of thio effects in reactions of phosphatases.
    Holtz KM; Catrina IE; Hengge AC; Kantrowitz ER
    Biochemistry; 2000 Aug; 39(31):9451-8. PubMed ID: 10924140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examination of P-OR bridging bond orders in phosphate monoesters using (18)O isotope shifts in 31P NMR.
    Sorensen-Stowell K; Hengge AC
    J Org Chem; 2005 Jun; 70(12):4805-9. PubMed ID: 15932321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alkaline phosphatase mono- and diesterase reactions: comparative transition state analysis.
    Zalatan JG; Herschlag D
    J Am Chem Soc; 2006 Feb; 128(4):1293-303. PubMed ID: 16433548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-directed mutagenesis maps interactions that enhance cognate and limit promiscuous catalysis by an alkaline phosphatase superfamily phosphodiesterase.
    Wiersma-Koch H; Sunden F; Herschlag D
    Biochemistry; 2013 Dec; 52(51):9167-76. PubMed ID: 24261692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational study of the influence of solvent on (16)O/(18)O equilibrium isotope effects in phosphate deprotonation reactions.
    Kolmodin K; Luzhkov VB; Aqvist J
    J Am Chem Soc; 2002 Aug; 124(34):10130-5. PubMed ID: 12188677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Cu(II)-promoted leaving group stabilization of the cleavage of a homologous set of phosphate mono-, di-, and triesters in water, methanol, and ethanol.
    Raycroft MA; Liu CT; Brown RS
    Inorg Chem; 2012 Mar; 51(6):3846-54. PubMed ID: 22397727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.