BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 12812768)

  • 1. Effect of tidal cycle and food intake on the baseline plasma corticosterone rhythm in intertidally foraging marine iguanas.
    Woodley SK; Painter DL; Moore MC; Wikelski M; Romero LM
    Gen Comp Endocrinol; 2003 Jun; 132(2):216-22. PubMed ID: 12812768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is there an endogenous tidal foraging rhythm in marine iguanas?
    Wikelski M; Hau M
    J Biol Rhythms; 1995 Dec; 10(4):335-50. PubMed ID: 8639942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diurnal and nocturnal differences in hypothalamic-pituitary-adrenal axis function in Galápagos marine iguanas.
    Romero LM; Wikelski M
    Gen Comp Endocrinol; 2006 Jan; 145(2):177-81. PubMed ID: 16263124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal pattern of foraging and microhabitat use by Galápagos marine iguanas, Amblyrhynchus cristatus.
    Buttemer WA; Dawson WR
    Oecologia; 1993 Oct; 96(1):56-64. PubMed ID: 28313754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress physiology as a predictor of survival in Galapagos marine iguanas.
    Romero LM; Wikelski M
    Proc Biol Sci; 2010 Oct; 277(1697):3157-62. PubMed ID: 20504812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circadian rhythm of ERG in Iguana iguana: role of the pineal.
    Miranda-Anaya M; Bartell PA; Yamazaki S; Menaker M
    J Biol Rhythms; 2000 Apr; 15(2):163-71. PubMed ID: 10762034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex interaction between circadian rhythm and diet on bile acid homeostasis in male rats.
    Eggink HM; Oosterman JE; de Goede P; de Vries EM; Foppen E; Koehorst M; Groen AK; Boelen A; Romijn JA; la Fleur SE; Soeters MR; Kalsbeek A
    Chronobiol Int; 2017; 34(10):1339-1353. PubMed ID: 29028359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corticosterone levels predict survival probabilities of Galapagos marine iguanas during El Nino events.
    Romero LM; Wikelski M
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7366-70. PubMed ID: 11416210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diurnal rhythm of agouti-related protein and its relation to corticosterone and food intake.
    Lu XY; Shieh KR; Kabbaj M; Barsh GS; Akil H; Watson SJ
    Endocrinology; 2002 Oct; 143(10):3905-15. PubMed ID: 12239102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic consequences of timed feeding in mice.
    Shamsi NA; Salkeld MD; Rattanatray L; Voultsios A; Varcoe TJ; Boden MJ; Kennaway DJ
    Physiol Behav; 2014 Apr; 128():188-201. PubMed ID: 24534172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavioral and physiological adjustments to new predators in an endemic island species, the Galápagos marine iguana.
    Berger S; Wikelski M; Romero LM; Kalko EK; Rödl T
    Horm Behav; 2007 Dec; 52(5):653-63. PubMed ID: 17904141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of paraventricular catecholamines in feeding-associated corticosterone rhythm in rats.
    Honma K; Noe Y; Honma S; Katsuno Y; Hiroshige T
    Am J Physiol; 1992 Jun; 262(6 Pt 1):E948-55. PubMed ID: 1616028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diurnal rhythm of apolipoprotein A-IV in rat hypothalamus and its relation to food intake and corticosterone.
    Liu M; Shen L; Liu Y; Tajima D; Sakai R; Woods SC; Tso P
    Endocrinology; 2004 Jul; 145(7):3232-8. PubMed ID: 15059955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The homeostatic feeding response to fasting is under chronostatic control.
    Rivera-Estrada D; Aguilar-Roblero R; Alva-Sánchez C; Villanueva I
    Chronobiol Int; 2018 Nov; 35(12):1680-1688. PubMed ID: 30095282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Period length of the light-dark cycle influences the growth rate and food intake in mice.
    Campuzano A; Cambras T; Vilaplana J; Canal MM; Carulla M; Díez-Noguera A
    Physiol Behav; 1999 Nov; 67(5):791-7. PubMed ID: 10604852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress responsiveness predicts individual variation in mate selectivity.
    Vitousek MN; Romero LM
    Gen Comp Endocrinol; 2013 Jun; 187():32-8. PubMed ID: 23524274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Period and phase control in a multioscillatory circadian system (Iguana iguana).
    Bartell PA; Miranda-Anaya M; Menaker M
    J Biol Rhythms; 2004 Feb; 19(1):47-57. PubMed ID: 14964703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase-advanced daily rhythms of melatonin, body temperature, and locomotor activity in food-restricted rats fed during daytime.
    Challet E; Pévet P; Vivien-Roels B; Malan A
    J Biol Rhythms; 1997 Feb; 12(1):65-79. PubMed ID: 9104691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical and microbiological evidence for fermentative digestion in free-living land iguanas (Conolophus pallidus) and marine iguanas (Amblyrhynchus cristatus) on the Galápagos archipelago.
    Mackie RI; Rycyk M; Ruemmler RL; Aminov RI; Wikelski M
    Physiol Biochem Zool; 2004; 77(1):127-38. PubMed ID: 15057723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diel changes in plasma melatonin and corticosterone concentrations in tropical Nazca boobies (Sula granti) in relation to moon phase and age.
    Tarlow EM; Hau M; Anderson DJ; Wikelski M
    Gen Comp Endocrinol; 2003 Oct; 133(3):297-304. PubMed ID: 12957473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.