These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 12813)

  • 21. A large photoreactive particle from Chromatium vinosum chromatophores.
    Halsey YD; Gyers B
    Biochim Biophys Acta; 1975 May; 387(2):349-67. PubMed ID: 1125294
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of ubiquinone as the secondary electron acceptor in the photosynthetic apparatus of Chromatium vinosum.
    Halsey YD; Parson WW
    Biochim Biophys Acta; 1974 Jun; 347(3):404-16. PubMed ID: 4366890
    [No Abstract]   [Full Text] [Related]  

  • 23. Flash-induced changes in the in vivo bacteriochlorophyll fluorescence yield at low temperatures and low redox potentials in carotenoid-containing strains of photosynthetic bacteria.
    Holmes NG; van Grondelle R; Duysens LN
    Biochim Biophys Acta; 1978 Jul; 503(1):26-36. PubMed ID: 96856
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cytochrome photooxidations in Chromatiumchromatophores. Each P870 oxidizes two cytochrome C422 hemes.
    Parson WW
    Biochim Biophys Acta; 1969; 189(3):397-403. PubMed ID: 5363977
    [No Abstract]   [Full Text] [Related]  

  • 25. The functional unit of electrical events and phosphorylation in chromatophores from Rhodopseudomonas sphaeroides.
    Saphon S; Jackson JB; Lerbs V; Witt HT
    Biochim Biophys Acta; 1975 Oct; 408(1):58-66. PubMed ID: 1080674
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nature of photochemical reactions in chromatophores of Chromatium D. II. Quantum yield of photooxidation of cytochromes in chromatium chromatophores.
    Takamiya K; Nishimura M
    Biochim Biophys Acta; 1974 Dec; 368(3):339-47. PubMed ID: 4451654
    [No Abstract]   [Full Text] [Related]  

  • 27. Cytochrome C553 and bacteriochlorophyll interaction at 77 K in chromatophores and a subchromatophore preparation from Chromatium D.
    Dutton PL; Kihara T; McCray JA; Thornber JP
    Biochim Biophys Acta; 1971 Jan; 226(1):81-7. PubMed ID: 5549986
    [No Abstract]   [Full Text] [Related]  

  • 28. Fast membrane H+ binding in the light-activated state of Chromatium chromatophores.
    Chance B; Crofts AR; Nishimura M; Price B
    Eur J Biochem; 1970 Apr; 13(2):364-74. PubMed ID: 5439938
    [No Abstract]   [Full Text] [Related]  

  • 29. The photosynthetic electron transfer chain of Chromatium vinosum chromatophores: flash-induced cytochrome b reduction.
    Bowyer JR; Crofts AR
    Biochim Biophys Acta; 1980 Jul; 591(2):298-311. PubMed ID: 7397126
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Near-infrared absorption spectra of light harvesting bacteriochlorophyll protein complexes from Chromatium vinosum.
    Hayashi H; Morita S
    J Biochem; 1980 Nov; 88(5):1251-8. PubMed ID: 7462180
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The reaction between primary and secondary electron acceptors in bacterial photosynthesis.
    Parson WW
    Biochim Biophys Acta; 1969; 189(3):384-96. PubMed ID: 5363976
    [No Abstract]   [Full Text] [Related]  

  • 32. Generation of membrane potential during photosynthetic electron flow in chromatophores from Rhodopseudomonas capsulata.
    Packham NK; Greenrod JA; Jackson JB
    Biochim Biophys Acta; 1980 Aug; 592(1):130-42. PubMed ID: 7397136
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A study on the membrane potential and pH gradient in chromatophores and intact cells of photosynthetic bacteria.
    Barsky EL; Bonch-Osmolovskaya EA; Ostroumov SA; Samuilov VD; Skulachev VP
    Biochim Biophys Acta; 1975 May; 387(2):388-95. PubMed ID: 236031
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of electron transfer by sidedness-dependent surface pH. Dependence of the rate of cytochrome c-555 reduction on H+ concentration in the surface region on the periplasmic side of photosynthetic membranes in whole cells, spheroplasts and chromatophores of Chromatium vinosum.
    Hashimoto K; Nishimura M
    J Biochem; 1981 Mar; 89(3):909-18. PubMed ID: 6270069
    [No Abstract]   [Full Text] [Related]  

  • 35. Studies on bacterial chromatophores. II. Energy transfer and photooxidative bleaching of bacteriochlorophyll in relation to structure in normal and carotenoid-depleted Chromatium.
    BRIL C
    Biochim Biophys Acta; 1963 Jan; 66():50-60. PubMed ID: 14015480
    [No Abstract]   [Full Text] [Related]  

  • 36. EPR properties of the electron carrier intermediate between the reaction center bacteriochlorophylls and the primary acceptor in Chromatium vinosum.
    Tiede DM; Prince RC; Reed GH; Dutton PL
    FEBS Lett; 1976 Jun; 65(3):301-4. PubMed ID: 182533
    [No Abstract]   [Full Text] [Related]  

  • 37. Cytochrome b and photosynthetic sulfur bacteria.
    Knaff DB; Buchanan BB
    Biochim Biophys Acta; 1975 Mar; 376(3):549-60. PubMed ID: 1125222
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Relation of cyclic and noncyclic electron transport in Rhodospirillum rubrum chromatophores. I. Experimental study of the kinetic characteristics of dark reduction of P870 with different donor concentrations in the medium].
    Pyt'eva NF; ChamorovskiÄ­ SK; Rubin AB
    Biofizika; 1978; 23(1):48-52. PubMed ID: 414786
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Circular dichroism of bacteriochlorophyll a in light harvesting bacteriochlorophyll protein complexes from Chromatium vinosum.
    Hayashi H; Nozawa T; Hatano M; Morita S
    J Biochem; 1981 Jun; 89(6):1853-61. PubMed ID: 7287660
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Shifts of the bacteriochlorophyll absorption band at 880 nm in chromatophores and subchromatophore pigment-protein complexes from Rhodospirillum rubrum].
    BarskiÄ­ EL; Samuilov VD
    Biokhimiia; 1979 Oct; 44(10):1805-13. PubMed ID: 41599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.