BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 12813074)

  • 1. Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli.
    Franke S; Grass G; Rensing C; Nies DH
    J Bacteriol; 2003 Jul; 185(13):3804-12. PubMed ID: 12813074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins.
    Chacón KN; Mealman TD; McEvoy MM; Blackburn NJ
    Proc Natl Acad Sci U S A; 2014 Oct; 111(43):15373-8. PubMed ID: 25313055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EPR Spectroscopy Targets Structural Changes in the E. coli Membrane Fusion CusB upon Cu(I) Binding.
    Meir A; Abdelhai A; Moskovitz Y; Ruthstein S
    Biophys J; 2017 Jun; 112(12):2494-2502. PubMed ID: 28636907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of ATPase-mediated Cu+ export and delivery to periplasmic chaperones: the interaction of Escherichia coli CopA and CusF.
    Padilla-Benavides T; George Thompson AM; McEvoy MM; Argüello JM
    J Biol Chem; 2014 Jul; 289(30):20492-501. PubMed ID: 24917681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between CusF and CusB identified by NMR spectroscopy and chemical cross-linking coupled to mass spectrometry.
    Mealman TD; Bagai I; Singh P; Goodlett DR; Rensing C; Zhou H; Wysocki VH; McEvoy MM
    Biochemistry; 2011 Apr; 50(13):2559-66. PubMed ID: 21323389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct metal transfer between periplasmic proteins identifies a bacterial copper chaperone.
    Bagai I; Rensing C; Blackburn NJ; McEvoy MM
    Biochemistry; 2008 Nov; 47(44):11408-14. PubMed ID: 18847219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal export by CusCFBA, the periplasmic Cu(I)/Ag(I) transport system of Escherichia coli.
    Mealman TD; Blackburn NJ; McEvoy MM
    Curr Top Membr; 2012; 69():163-96. PubMed ID: 23046651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EPR spectroscopy identifies Met and Lys residues that are essential for the interaction between the CusB N-terminal domain and metallochaperone CusF.
    Meir A; Natan A; Moskovitz Y; Ruthstein S
    Metallomics; 2015 Jul; 7(7):1163-72. PubMed ID: 25940871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Models for the Metal Transfer Complex of the N-Terminal Region of CusB and CusF.
    Ucisik MN; Chakravorty DK; Merz KM
    Biochemistry; 2015 Jul; 54(27):4226-35. PubMed ID: 26079272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-terminal region of CusB is sufficient for metal binding and metal transfer with the metallochaperone CusF.
    Mealman TD; Zhou M; Affandi T; Chacón KN; Aranguren ME; Blackburn NJ; Wysocki VH; McEvoy MM
    Biochemistry; 2012 Aug; 51(34):6767-75. PubMed ID: 22812620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate-linked conformational change in the periplasmic component of a Cu(I)/Ag(I) efflux system.
    Bagai I; Liu W; Rensing C; Blackburn NJ; McEvoy MM
    J Biol Chem; 2007 Dec; 282(49):35695-702. PubMed ID: 17893146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural mechanisms of heavy-metal extrusion by the Cus efflux system.
    Delmar JA; Su CC; Yu EW
    Biometals; 2013 Aug; 26(4):593-607. PubMed ID: 23657864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charged amino acids (R83, E567, D617, E625, R669, and K678) of CusA are required for metal ion transport in the Cus efflux system.
    Su CC; Long F; Lei HT; Bolla JR; Do SV; Rajashankar KR; Yu EW
    J Mol Biol; 2012 Sep; 422(3):429-41. PubMed ID: 22683351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Periplasmic domain of CusA in an Escherichia coli Cu+/Ag+ transporter has metal binding sites.
    Yun BY; Xu Y; Piao S; Kim N; Yoon JH; Cho HS; Lee K; Ha NC
    J Microbiol; 2010 Dec; 48(6):829-35. PubMed ID: 21221942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of the membrane fusion protein CusB from Escherichia coli.
    Su CC; Yang F; Long F; Reyon D; Routh MD; Kuo DW; Mokhtari AK; Van Ornam JD; Rabe KL; Hoy JA; Lee YJ; Rajashankar KR; Yu EW
    J Mol Biol; 2009 Oct; 393(2):342-55. PubMed ID: 19695261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel copper-binding fold for the periplasmic copper resistance protein CusF.
    Loftin IR; Franke S; Roberts SA; Weichsel A; Héroux A; Montfort WR; Rensing C; McEvoy MM
    Biochemistry; 2005 Aug; 44(31):10533-40. PubMed ID: 16060662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biophysical and physiological characterization of ZraP from Escherichia coli, the periplasmic accessory protein of the atypical ZraSR two-component system.
    Petit-Härtlein I; Rome K; de Rosny E; Molton F; Duboc C; Gueguen E; Rodrigue A; Covès J
    Biochem J; 2015 Dec; 472(2):205-16. PubMed ID: 26438879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PcoE--a metal sponge expressed to the periplasm of copper resistance Escherichia coli. Implication of its function role in copper resistance.
    Zimmermann M; Udagedara SR; Sze CM; Ryan TM; Howlett GJ; Xiao Z; Wedd AG
    J Inorg Biochem; 2012 Oct; 115():186-97. PubMed ID: 22658755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Periplasmic oxidized-protein repair during copper stress in E. coli: A focus on the metallochaperone CusF.
    Vergnes A; Henry C; Grassini G; Loiseau L; El Hajj S; Denis Y; Galinier A; Vertommen D; Aussel L; Ezraty B
    PLoS Genet; 2022 Jul; 18(7):e1010180. PubMed ID: 35816552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Periplasmic metal-resistance protein CusF exhibits high affinity and specificity for both CuI and AgI.
    Kittleson JT; Loftin IR; Hausrath AC; Engelhardt KP; Rensing C; McEvoy MM
    Biochemistry; 2006 Sep; 45(37):11096-102. PubMed ID: 16964970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.