BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 12813074)

  • 41. Heavy metal transport by the CusCFBA efflux system.
    Delmar JA; Su CC; Yu EW
    Protein Sci; 2015 Nov; 24(11):1720-36. PubMed ID: 26258953
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Crystallization and preliminary X-ray crystallographic analysis of Escherichia coli CusB.
    Xu Y; Yun BY; Sim SH; Lee K; Ha NC
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Jul; 65(Pt 7):743-5. PubMed ID: 19574656
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular mechanism of ferricsiderophore passage through the outer membrane receptor proteins of Escherichia coli.
    Chakraborty R; Storey E; van der Helm D
    Biometals; 2007 Jun; 20(3-4):263-74. PubMed ID: 17186377
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular characterization, metal uptake and copper induced transcriptional activation of efflux determinants in copper resistant isolates of Klebsiella pneumoniae.
    Zulfiqar S; Shakoori AR
    Gene; 2012 Nov; 510(1):32-8. PubMed ID: 22960400
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optimizing Periplasmic Expression in Escherichia coli for the Production of Recombinant Proteins Tagged with the Small Metal-Binding Protein SmbP.
    Santos BD; Morones-Ramirez JR; Balderas-Renteria I; Casillas-Vega NG; Galbraith DW; Zarate X
    Mol Biotechnol; 2019 Jun; 61(6):451-460. PubMed ID: 30997666
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Pco proteins are involved in periplasmic copper handling in Escherichia coli.
    Lee SM; Grass G; Rensing C; Barrett SR; Yates CJ; Stoyanov JV; Brown NL
    Biochem Biophys Res Commun; 2002 Jul; 295(3):616-20. PubMed ID: 12099683
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Trapping intermediates in metal transfer reactions of the CusCBAF export pump of
    Chacón KN; Perkins J; Mathe Z; Alwan K; Ho EN; Ucisik MN; Merz KM; Blackburn NJ
    Commun Biol; 2018; 1():192. PubMed ID: 30456313
    [No Abstract]   [Full Text] [Related]  

  • 48. RcnB is a periplasmic protein essential for maintaining intracellular Ni and Co concentrations in Escherichia coli.
    Blériot C; Effantin G; Lagarde F; Mandrand-Berthelot MA; Rodrigue A
    J Bacteriol; 2011 Aug; 193(15):3785-93. PubMed ID: 21665978
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structure and mechanism of the tripartite CusCBA heavy-metal efflux complex.
    Long F; Su CC; Lei HT; Bolla JR; Do SV; Yu EW
    Philos Trans R Soc Lond B Biol Sci; 2012 Apr; 367(1592):1047-58. PubMed ID: 22411977
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of mdoD, an mdoG paralog which encodes a twin-arginine-dependent periplasmic protein that controls osmoregulated periplasmic glucan backbone structures.
    Lequette Y; Odberg-Ferragut C; Bohin JP; Lacroix JM
    J Bacteriol; 2004 Jun; 186(12):3695-702. PubMed ID: 15175282
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tryptophan Cu(I)-pi interaction fine-tunes the metal binding properties of the bacterial metallochaperone CusF.
    Loftin IR; Blackburn NJ; McEvoy MM
    J Biol Inorg Chem; 2009 Aug; 14(6):905-12. PubMed ID: 19381697
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural basis of copper binding by a dimeric periplasmic protein forming a six-helical bundle.
    Yang J; Gao M; Wang J; He C; Wang X; Liu L
    J Inorg Biochem; 2022 Apr; 229():111728. PubMed ID: 35066349
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Subcellular targeting of bacterial CusF enhances Cu accumulation and alters root to shoot Cu translocation in arabidopsis.
    Yu P; Yuan J; Deng X; Ma M; Zhang H
    Plant Cell Physiol; 2014 Sep; 55(9):1568-81. PubMed ID: 24951313
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Crystal structures of multicopper oxidase CueO bound to copper(I) and silver(I): functional role of a methionine-rich sequence.
    Singh SK; Roberts SA; McDevitt SF; Weichsel A; Wildner GF; Grass GB; Rensing C; Montfort WR
    J Biol Chem; 2011 Oct; 286(43):37849-57. PubMed ID: 21903583
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Escherichia coli mechanisms of copper homeostasis in a changing environment.
    Rensing C; Grass G
    FEMS Microbiol Rev; 2003 Jun; 27(2-3):197-213. PubMed ID: 12829268
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The histidine kinase CusS senses silver ions through direct binding by its sensor domain.
    Gudipaty SA; McEvoy MM
    Biochim Biophys Acta; 2014 Sep; 1844(9):1656-61. PubMed ID: 24948475
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of a dipartite iron uptake system from uropathogenic Escherichia coli strain F11.
    Koch D; Chan AC; Murphy ME; Lilie H; Grass G; Nies DH
    J Biol Chem; 2011 Jul; 286(28):25317-30. PubMed ID: 21596746
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genes involved in copper homeostasis in Escherichia coli.
    Grass G; Rensing C
    J Bacteriol; 2001 Mar; 183(6):2145-7. PubMed ID: 11222619
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cryo-EM Structures of CusA Reveal a Mechanism of Metal-Ion Export.
    Moseng MA; Lyu M; Pipatpolkai T; Glaza P; Emerson CC; Stewart PL; Stansfeld PJ; Yu EW
    mBio; 2021 Apr; 12(2):. PubMed ID: 33820823
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Engineered Escherichia coli silver-binding periplasmic protein that promotes silver tolerance.
    Sedlak RH; Hnilova M; Grosh C; Fong H; Baneyx F; Schwartz D; Sarikaya M; Tamerler C; Traxler B
    Appl Environ Microbiol; 2012 Apr; 78(7):2289-96. PubMed ID: 22286990
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.