These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 1281328)
1. Pore size and negative charge as structural determinants of permeability in the Torpedo nicotinic acetylcholine receptor channel. Wang F; Imoto K Proc Biol Sci; 1992 Oct; 250(1327):11-7. PubMed ID: 1281328 [TBL] [Abstract][Full Text] [Related]
2. Rings of anionic amino acids as structural determinants of ion selectivity in the acetylcholine receptor channel. Konno T; Busch C; Von Kitzing E; Imoto K; Wang F; Nakai J; Mishina M; Numa S; Sakmann B Proc Biol Sci; 1991 May; 244(1310):69-79. PubMed ID: 1679551 [TBL] [Abstract][Full Text] [Related]
3. Mutations in M2 alter the selectivity of the mouse nicotinic acetylcholine receptor for organic and alkali metal cations. Cohen BN; Labarca C; Davidson N; Lester HA J Gen Physiol; 1992 Sep; 100(3):373-400. PubMed ID: 1431803 [TBL] [Abstract][Full Text] [Related]
4. Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Galzi JL; Devillers-Thiéry A; Hussy N; Bertrand S; Changeux JP; Bertrand D Nature; 1992 Oct; 359(6395):500-5. PubMed ID: 1383829 [TBL] [Abstract][Full Text] [Related]
5. A ring of uncharged polar amino acids as a component of channel constriction in the nicotinic acetylcholine receptor. Imoto K; Konno T; Nakai J; Wang F; Mishina M; Numa S FEBS Lett; 1991 Sep; 289(2):193-200. PubMed ID: 1717313 [TBL] [Abstract][Full Text] [Related]
6. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Imoto K; Busch C; Sakmann B; Mishina M; Konno T; Nakai J; Bujo H; Mori Y; Fukuda K; Numa S Nature; 1988 Oct; 335(6191):645-8. PubMed ID: 2459620 [TBL] [Abstract][Full Text] [Related]
7. Activation of the Torpedo nicotinic acetylcholine receptor. The contribution of residues alphaArg55 and gammaGlu93. Kapur A; Davies M; Dryden WF; Dunn SM FEBS J; 2006 Mar; 273(5):960-70. PubMed ID: 16478470 [TBL] [Abstract][Full Text] [Related]
8. Tryptophan substitutions reveal the role of nicotinic acetylcholine receptor alpha-TM3 domain in channel gating: differences between Torpedo and muscle-type AChR. Navedo M; Nieves M; Rojas L; Lasalde-Dominicci JA Biochemistry; 2004 Jan; 43(1):78-84. PubMed ID: 14705933 [TBL] [Abstract][Full Text] [Related]
9. Interaction of barbiturate analogs with the Torpedo californica nicotinic acetylcholine receptor ion channel. Arias HR; McCardy EA; Gallagher MJ; Blanton MP Mol Pharmacol; 2001 Sep; 60(3):497-506. PubMed ID: 11502880 [TBL] [Abstract][Full Text] [Related]
10. Functional effects of periodic tryptophan substitutions in the alpha M4 transmembrane domain of the Torpedo californica nicotinic acetylcholine receptor. Tamamizu S; Guzmán GR; Santiago J; Rojas LV; McNamee MG; Lasalde-Dominicci JA Biochemistry; 2000 Apr; 39(16):4666-73. PubMed ID: 10769122 [TBL] [Abstract][Full Text] [Related]
11. Characterization of interaction of 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester with Torpedo californica nicotinic acetylcholine receptor and 5-hydroxytryptamine3 receptor. Sun H; McCardy EA; Machu TK; Blanton MP J Pharmacol Exp Ther; 1999 Jul; 290(1):129-35. PubMed ID: 10381768 [TBL] [Abstract][Full Text] [Related]
12. A negative charge in the M2 transmembrane segment of the neuronal alpha 7 acetylcholine receptor increases permeability to divalent cations. Ferrer-Montiel AV; Montal M FEBS Lett; 1993 Jun; 324(2):185-90. PubMed ID: 7685297 [TBL] [Abstract][Full Text] [Related]
13. Tryptophan substitutions at the lipid-exposed transmembrane segment M4 of Torpedo californica acetylcholine receptor govern channel gating. Lasalde JA; Tamamizu S; Butler DH; Vibat CR; Hung B; McNamee MG Biochemistry; 1996 Nov; 35(45):14139-48. PubMed ID: 8916899 [TBL] [Abstract][Full Text] [Related]
14. Cation permeability and cation-anion interactions in a mutant GABA-gated chloride channel from Drosophila. Wang CT; Zhang HG; Rocheleau TA; ffrench-Constant RH; Jackson MB Biophys J; 1999 Aug; 77(2):691-700. PubMed ID: 10423418 [TBL] [Abstract][Full Text] [Related]
15. The nicotinic acetylcholine receptor of the Torpedo electric ray. Unwin N J Struct Biol; 1998; 121(2):181-90. PubMed ID: 9615437 [TBL] [Abstract][Full Text] [Related]
16. Kinked-helices model of the nicotinic acetylcholine receptor ion channel and its complexes with blockers: simulation by the Monte Carlo minimization method. Tikhonov DB; Zhorov BS Biophys J; 1998 Jan; 74(1):242-55. PubMed ID: 9449326 [TBL] [Abstract][Full Text] [Related]
17. Key roles of hydrophobic rings of TM2 in gating of the alpha9alpha10 nicotinic cholinergic receptor. Plazas PV; De Rosa MJ; Gomez-Casati ME; Verbitsky M; Weisstaub N; Katz E; Bouzat C; Elgoyhen AB Br J Pharmacol; 2005 Aug; 145(7):963-74. PubMed ID: 15895110 [TBL] [Abstract][Full Text] [Related]
18. A molecular link between inward rectification and calcium permeability of neuronal nicotinic acetylcholine alpha3beta4 and alpha4beta2 receptors. Haghighi AP; Cooper E J Neurosci; 2000 Jan; 20(2):529-41. PubMed ID: 10632582 [TBL] [Abstract][Full Text] [Related]
19. Molecular determinants of single-channel conductance and ion selectivity in the Cys-loop family: insights from the 5-HT3 receptor. Peters JA; Hales TG; Lambert JJ Trends Pharmacol Sci; 2005 Nov; 26(11):587-94. PubMed ID: 16194573 [TBL] [Abstract][Full Text] [Related]
20. Tryptophan scanning mutagenesis reveals distortions in the helical structure of the δM4 transmembrane domain of the Torpedo californica nicotinic acetylcholine receptor. Caballero-Rivera D; Cruz-Nieves OA; Oyola-Cintrón J; Torres-Nunez DA; Otero-Cruz JD; Lasalde-Dominicci JA Channels (Austin); 2012; 6(2):111-23. PubMed ID: 22622285 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]