These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 1281328)
21. Modelling and simulation of ion channels: applications to the nicotinic acetylcholine receptor. Sansom MS; Adcock C; Smith GR J Struct Biol; 1998; 121(2):246-62. PubMed ID: 9615441 [TBL] [Abstract][Full Text] [Related]
22. Functional role of the cysteine 451 thiol group in the M4 helix of the gamma subunit of Torpedo californica acetylcholine receptor. Li L; Schuchard M; Palma A; Pradier L; McNamee MG Biochemistry; 1990 Jun; 29(23):5428-36. PubMed ID: 1696834 [TBL] [Abstract][Full Text] [Related]
23. Tris+/Na+ permeability ratios of nicotinic acetylcholine receptors are reduced by mutations near the intracellular end of the M2 region. Cohen BN; Labarca C; Czyzyk L; Davidson N; Lester HA J Gen Physiol; 1992 Apr; 99(4):545-72. PubMed ID: 1597678 [TBL] [Abstract][Full Text] [Related]
24. Structure of the agonist-binding sites of the Torpedo nicotinic acetylcholine receptor: affinity-labeling and mutational analyses identify gamma Tyr-111/delta Arg-113 as antagonist affinity determinants. Chiara DC; Xie Y; Cohen JB Biochemistry; 1999 May; 38(20):6689-98. PubMed ID: 10350488 [TBL] [Abstract][Full Text] [Related]
25. Tryptophan substitutions at lipid-exposed positions of the gamma M3 transmembrane domain increase the macroscopic ionic current response of the Torpedo californica nicotinic acetylcholine receptor. Cruz-Martín A; Mercado JL; Rojas LV; McNamee MG; Lasalde-Dominicci JA J Membr Biol; 2001 Sep; 183(1):61-70. PubMed ID: 11547353 [TBL] [Abstract][Full Text] [Related]
26. Synthetic peptides and four-helix bundle proteins as model systems for the pore-forming structure of channel proteins. I. Transmembrane segment M2 of the nicotinic cholinergic receptor channel is a key pore-lining structure. Oblatt-Montal M; Bühler LK; Iwamoto T; Tomich JM; Montal M J Biol Chem; 1993 Jul; 268(20):14601-7. PubMed ID: 7686900 [TBL] [Abstract][Full Text] [Related]
27. Pore structure of the Cys-loop ligand-gated ion channels. Absalom NL; Schofield PR; Lewis TM Neurochem Res; 2009 Oct; 34(10):1805-15. PubMed ID: 19381804 [TBL] [Abstract][Full Text] [Related]
28. Stratified organization of the nicotinic acetylcholine receptor channel. Devillers-Thiéry A; Galzi JL; Bertrand S; Changeux JP; Bertrand D Neuroreport; 1992 Nov; 3(11):1001-4. PubMed ID: 1282832 [TBL] [Abstract][Full Text] [Related]
29. The 5-hydroxytryptamine type 3 (5-HT3) receptor reveals a novel determinant of single-channel conductance. Peters JA; Kelley SP; Dunlop JI; Kirkness EF; Hales TG; Lambert JJ Biochem Soc Trans; 2004 Jun; 32(Pt3):547-52. PubMed ID: 15157181 [TBL] [Abstract][Full Text] [Related]
30. Solution conformation of the antibody-bound tyrosine phosphorylation site of the nicotinic acetylcholine receptor beta-subunit in its phosphorylated and nonphosphorylated states. Phan-Chan-Du A; Hemmerlin C; Krikorian D; Sakarellos-Daitsiotis M; Tsikaris V; Sakarellos C; Marinou M; Thureau A; Cung MT; Tzartos SJ Biochemistry; 2003 Jun; 42(24):7371-80. PubMed ID: 12809492 [TBL] [Abstract][Full Text] [Related]
31. Functional properties of nicotinic acetylcholine receptor subunits expressed in various combinations. Kurosaki T; Fukuda K; Konno T; Mori Y; Tanaka K; Mishina M; Numa S FEBS Lett; 1987 Apr; 214(2):253-8. PubMed ID: 2436944 [TBL] [Abstract][Full Text] [Related]
32. Site-specific mutations of nicotinic acetylcholine receptor at the lipid-protein interface dramatically alter ion channel gating. Li L; Lee YH; Pappone P; Palma A; McNamee MG Biophys J; 1992 Apr; 62(1):61-3. PubMed ID: 1600100 [No Abstract] [Full Text] [Related]
33. Location of a threonine residue in the alpha-subunit M2 transmembrane segment that determines the ion flow through the acetylcholine receptor channel. Villarroel A; Herlitze S; Koenen M; Sakmann B Proc Biol Sci; 1991 Jan; 243(1306):69-74. PubMed ID: 1708143 [TBL] [Abstract][Full Text] [Related]
34. Conductance mutations of the nicotinic acetylcholine receptor do not act by a simple electrostatic mechanism. Kienker P; Tomaselli G; Jurman M; Yellen G Biophys J; 1994 Feb; 66(2 Pt 1):325-34. PubMed ID: 8161686 [TBL] [Abstract][Full Text] [Related]
35. Dimensions of the narrow portion of a recombinant NMDA receptor channel. Villarroel A; Burnashev N; Sakmann B Biophys J; 1995 Mar; 68(3):866-75. PubMed ID: 7538803 [TBL] [Abstract][Full Text] [Related]
36. Threonine in the selectivity filter of the acetylcholine receptor channel. Villarroel A; Sakmann B Biophys J; 1992 Apr; 62(1):196-205; discussion 205-8. PubMed ID: 1376167 [TBL] [Abstract][Full Text] [Related]
38. Alteration in ion channel function of mouse nicotinic acetylcholine receptor by mutations in the M4 transmembrane domain. Tamamizu S; Lee Y; Hung B; McNamee MG; Lasalde-Dominicci JA J Membr Biol; 1999 Jul; 170(2):157-64. PubMed ID: 10430659 [TBL] [Abstract][Full Text] [Related]
39. Mutations in the M4 domain of the Torpedo californica nicotinic acetylcholine receptor alter channel opening and closing. Ortiz-Miranda SI; Lasalde JA; Pappone PA; McNamee MG J Membr Biol; 1997 Jul; 158(1):17-30. PubMed ID: 9211718 [TBL] [Abstract][Full Text] [Related]
40. Mutations in the M4 domain of Torpedo californica acetylcholine receptor dramatically alter ion channel function. Lee YH; Li L; Lasalde J; Rojas L; McNamee M; Ortiz-Miranda SI; Pappone P Biophys J; 1994 Mar; 66(3 Pt 1):646-53. PubMed ID: 7516721 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]