These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 1281350)

  • 41. Brain-spinal cord interactions stabilize the locomotor rhythm to an external perturbation.
    Grandhe S; Abbas JJ; Jung R
    Biomed Sci Instrum; 1999; 35():175-80. PubMed ID: 11143343
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis and modeling of the locomotor central pattern generator as a network of coupled oscillators.
    Sigvardt KA; Miller WL
    Ann N Y Acad Sci; 1998 Nov; 860():250-65. PubMed ID: 9928317
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Neural network simulations of coupled locomotor oscillators in the lamprey spinal cord.
    Buchanan JT
    Biol Cybern; 1992; 66(4):367-74. PubMed ID: 1550884
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interaction between the caudal brainstem and the lamprey central pattern generator for locomotion.
    Cohen AH; Guan L; Harris J; Jung R; Kiemel T
    Neuroscience; 1996 Oct; 74(4):1161-73. PubMed ID: 8895883
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Simple models for excitable and oscillatory neural networks.
    Taylor D; Holmes P
    J Math Biol; 1998 Nov; 37(5):419-46. PubMed ID: 9836466
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gating of steering signals through phasic modulation of reticulospinal neurons during locomotion.
    Kozlov AK; Kardamakis AA; Hellgren Kotaleski J; Grillner S
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3591-6. PubMed ID: 24550483
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phase-based control of the central pattern generator for locomotion.
    Vogelstein R; Etienne-Cummings R; Cohen AH
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2125-8. PubMed ID: 19964580
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Model for intersegmental coordination of leech swimming: central and sensory mechanisms.
    Cang J; Friesen WO
    J Neurophysiol; 2002 Jun; 87(6):2760-9. PubMed ID: 12037178
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanisms of rhythm generation in a spinal locomotor network deprived of crossed connections: the lamprey hemicord.
    Cangiano L; Grillner S
    J Neurosci; 2005 Jan; 25(4):923-35. PubMed ID: 15673673
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Simple cellular and network control principles govern complex patterns of motor behavior.
    Kozlov A; Huss M; Lansner A; Kotaleski JH; Grillner S
    Proc Natl Acad Sci U S A; 2009 Nov; 106(47):20027-32. PubMed ID: 19901329
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pattern of motor coordination underlying backward swimming in the lamprey.
    Islam SS; Zelenin PV; Orlovsky GN; Grillner S; Deliagina TG
    J Neurophysiol; 2006 Jul; 96(1):451-60. PubMed ID: 16772518
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Isoflurane disrupts central pattern generator activity and coordination in the lamprey isolated spinal cord.
    Jinks SL; Atherley RJ; Dominguez CL; Sigvardt KA; Antognini JF
    Anesthesiology; 2005 Sep; 103(3):567-75. PubMed ID: 16129982
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Intersegmental coordination of the leech swimming rhythm. II. Comparison of long and short chains of ganglia.
    Pearce RA; Friesen WO
    J Neurophysiol; 1985 Dec; 54(6):1460-72. PubMed ID: 4087043
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modeling and analysis of a new locomotion control neural networks.
    Liu Q; Wang JZ
    Biol Cybern; 2018 Aug; 112(4):345-356. PubMed ID: 29700596
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Time course of locomotor recovery and functional regeneration in spinal-transected lamprey: kinematics and electromyography.
    Davis GR; Troxel MT; Kohler VJ; Grossmann EM; McClellan AD
    Exp Brain Res; 1993; 97(1):83-95. PubMed ID: 8131834
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Origin of phasic synaptic inhibition in myotomal motoneurons during fictive locomotion in the lamprey.
    Wallén P; Shupliakov O; Hill RH
    Exp Brain Res; 1993; 96(2):194-202. PubMed ID: 8270016
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Intersegmental coordination of the leech swimming rhythm. I. Roles of cycle period gradient and coupling strength.
    Pearce RA; Friesen WO
    J Neurophysiol; 1985 Dec; 54(6):1444-59. PubMed ID: 4087042
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The roles of spinal interneurons and motoneurons in the lamprey locomotor network.
    Buchanan JT
    Prog Brain Res; 1999; 123():311-21. PubMed ID: 10635726
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Strychnine eliminates alternating motor output during fictive locomotion in the lamprey.
    Cohen AH; Harris-Warrick RM
    Brain Res; 1984 Feb; 293(1):164-7. PubMed ID: 6704713
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The spinobulbar system in lamprey.
    Buchanan JT; Einum JF
    Brain Res Rev; 2008 Jan; 57(1):37-45. PubMed ID: 17716741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.