BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 1281416)

  • 1. Precocious pathfinding: retinal axons can navigate in an axonless brain.
    Cornel E; Holt C
    Neuron; 1992 Dec; 9(6):1001-11. PubMed ID: 1281416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The development of the Xenopus retinofugal pathway: optic fibers join a pre-existing tract.
    Easter SS; Taylor JS
    Development; 1989 Nov; 107(3):553-73. PubMed ID: 2612377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axonal pathfinding during the regeneration of the goldfish optic pathway.
    Bernhardt R
    J Comp Neurol; 1989 Jun; 284(1):119-34. PubMed ID: 2754027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ipsilaterally projecting retinal ganglion cells in Xenopus laevis: an HRP study.
    Schütte M; Hoskins SG
    J Comp Neurol; 1993 May; 331(4):482-94. PubMed ID: 8509506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Matrix metalloproteinases are required for retinal ganglion cell axon guidance at select decision points.
    Hehr CL; Hocking JC; McFarlane S
    Development; 2005 Aug; 132(15):3371-9. PubMed ID: 15975939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth of retinal ganglion cell axons following optic nerve crush in adult hamsters.
    Stevenson JA
    Exp Neurol; 1987 Jul; 97(1):77-89. PubMed ID: 2438151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Xenopus sonic hedgehog guides retinal axons along the optic tract.
    Gordon L; Mansh M; Kinsman H; Morris AR
    Dev Dyn; 2010 Nov; 239(11):2921-32. PubMed ID: 20931659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal pathfinding during development of the rostral brain in Xenopus.
    Key B; Anderson RB
    Clin Exp Pharmacol Physiol; 1999 Sep; 26(9):752-4. PubMed ID: 10499168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quantitative analysis of frog optic nerve regeneration: is retrograde ganglion cell death or collateral axonal loss related to selective reinnervation?
    Stelzner DJ; Strauss JA
    J Comp Neurol; 1986 Mar; 245(1):83-106. PubMed ID: 3485663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axonal transport of proteoglycans in regenerating goldfish optic nerve.
    Dow KE; Levine RL; Solc MA; DaSilva O; Riopelle RJ
    Exp Neurol; 1994 Mar; 126(1):129-37. PubMed ID: 7512512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The early development of the frog retinotectal projection.
    Taylor JS
    Dev Suppl; 1991; Suppl 2():95-104. PubMed ID: 1842361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The return of phosphorylated and nonphosphorylated epitopes of neurofilament proteins to the regenerating optic nerve of Xenopus laevis.
    Zhao Y; Szaro BG
    J Comp Neurol; 1994 May; 343(1):158-72. PubMed ID: 7517961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xefiltin, a Xenopus laevis neuronal intermediate filament protein, is expressed in actively growing optic axons during development and regeneration.
    Zhao Y; Szaro BG
    J Neurobiol; 1997 Nov; 33(6):811-24. PubMed ID: 9369153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization of retinal axons within the optic nerve, optic chiasm, and the innervation of multiple central nervous system targets Rana pipiens.
    Montgomery NM; Tyler C; Fite KV
    J Comp Neurol; 1998 Dec; 402(2):222-37. PubMed ID: 9845245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preferential loss of collaterals from goldfish retinal axons in the optic tract is delayed by tetrodotoxin.
    Hartlieb E; Stuermer CA
    Neurosci Lett; 1987 Aug; 79(1-2):1-5. PubMed ID: 3670716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Staining of regenerated optic arbors in goldfish tectum: progressive changes in immature arbors and a comparison of mature regenerated arbors with normal arbors.
    Schmidt JT; Turcotte JC; Buzzard M; Tieman DG
    J Comp Neurol; 1988 Mar; 269(4):565-91. PubMed ID: 3372728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A specific brain tract guides follower growth cones in two regions of the zebrafish brain.
    Chitnis AB; Patel CK; Kim S; Kuwada JY
    J Neurobiol; 1992 Sep; 23(7):845-54. PubMed ID: 1431848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topographic disorganization of the optic tracts following long-term optic nerve regeneration: a quantitative image analysis study.
    Springer AD; Morel KD; Wilson BR
    J Comp Neurol; 1990 Aug; 298(4):458-71. PubMed ID: 2229475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chondroitin sulfate disrupts axon pathfinding in the optic tract and alters growth cone dynamics.
    Walz A; Anderson RB; Irie A; Chien CB; Holt CE
    J Neurobiol; 2002 Nov; 53(3):330-42. PubMed ID: 12382261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synapses of optic axons with GABA- and glutamate-containing elements in the optic tectum of Bufo marinus.
    Gábriel R; Straznicky C
    J Hirnforsch; 1995; 36(3):329-40. PubMed ID: 7560905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.