These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1093 related articles for article (PubMed ID: 12814238)

  • 1. Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly.
    Najafi B; Aminian K; Paraschiv-Ionescu A; Loew F; Büla CJ; Robert P
    IEEE Trans Biomed Eng; 2003 Jun; 50(6):711-23. PubMed ID: 12814238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stair climbing detection during daily physical activity using a miniature gyroscope.
    Coley B; Najafi B; Paraschiv-Ionescu A; Aminian K
    Gait Posture; 2005 Dec; 22(4):287-94. PubMed ID: 16274909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ambulatory system for the quantitative and qualitative analysis of gait and posture in chronic pain patients treated with spinal cord stimulation.
    Paraschiv-Ionescu A; Buchser EE; Rutschmann B; Najafi B; Aminian K
    Gait Posture; 2004 Oct; 20(2):113-25. PubMed ID: 15336280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of a known sequence of motions and postures from accelerometry data using adapted Gaussian mixture models.
    Allen FR; Ambikairajah E; Lovell NH; Celler BG
    Physiol Meas; 2006 Oct; 27(10):935-51. PubMed ID: 16951454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A description of an accelerometer-based mobility monitoring technique.
    Lyons GM; Culhane KM; Hilton D; Grace PA; Lyons D
    Med Eng Phys; 2005 Jul; 27(6):497-504. PubMed ID: 15990066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microcomputer-based daily living activity recording system.
    Matsuoka S; Yonezawa Y; Maki H; Ogawa H; Hahn AW; Thayer JF; Caldwell WM
    Biomed Sci Instrum; 2003; 39():220-3. PubMed ID: 12724898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly.
    Najafi B; Aminian K; Loew F; Blanc Y; Robert PA
    IEEE Trans Biomed Eng; 2002 Aug; 49(8):843-51. PubMed ID: 12148823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discrimination of walking patterns using wavelet-based fractal analysis.
    Sekine M; Tamura T; Akay M; Fujimoto T; Togawa T; Fukui Y
    IEEE Trans Neural Syst Rehabil Eng; 2002 Sep; 10(3):188-96. PubMed ID: 12503784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a fibre optic goniometer system to measure lumbar and hip movement to detect activities and their lumbar postures.
    Bell JA; Stigant M
    J Med Eng Technol; 2007; 31(5):361-6. PubMed ID: 17701781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity monitoring for assessment of physical activities in daily life in patients with chronic obstructive pulmonary disease.
    Pitta F; Troosters T; Spruit MA; Decramer M; Gosselink R
    Arch Phys Med Rehabil; 2005 Oct; 86(10):1979-85. PubMed ID: 16213242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of orientation sensors for use with a functional electrical stimulation mobility system.
    Simcox S; Parker S; Davis GM; Smith RW; Middleton JW
    J Biomech; 2005 May; 38(5):1185-90. PubMed ID: 15797599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity classification using a single chest mounted tri-axial accelerometer.
    Godfrey A; Bourke AK; Olaighin GM; van de Ven P; Nelson J
    Med Eng Phys; 2011 Nov; 33(9):1127-35. PubMed ID: 21636308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inclination measurement of human movement using a 3-D accelerometer with autocalibration.
    Luinge HJ; Veltink PH
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):112-21. PubMed ID: 15068194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time elderly activity monitoring system based on a tri-axial accelerometer.
    Kang DW; Choi JS; Lee JW; Chung SC; Park SJ; Tack GR
    Disabil Rehabil Assist Technol; 2010 Jul; 5(4):247-53. PubMed ID: 20302417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The development and test of a device for the reconstruction of 3-D position and orientation by means of a kinematic sensor assembly with rate gyroscopes and accelerometers.
    Giansanti D; Maccioni G; Macellari V
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1271-7. PubMed ID: 16041990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel approach to ambulatory assessment of human segmental orientation on a wearable sensor system.
    Liu K; Liu T; Shibata K; Inoue Y; Zheng R
    J Biomech; 2009 Dec; 42(16):2747-52. PubMed ID: 19748624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the performance of the activPAL Professional physical activity logger to a discrete accelerometer-based activity monitor.
    Godfrey A; Culhane KM; Lyons GM
    Med Eng Phys; 2007 Oct; 29(8):930-4. PubMed ID: 17134934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steps towards a miniaturized, robust and autonomous measurement device for the long-term monitoring of patient activity: ActiBelt.
    Daumer M; Thaler K; Kruis E; Feneberg W; Staude G; Scholz M
    Biomed Tech (Berl); 2007 Feb; 52(1):149-55. PubMed ID: 17313352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suitability of commercial barometric pressure sensors to distinguish sitting and standing activities for wearable monitoring.
    Massé F; Bourke AK; Chardonnens J; Paraschiv-Ionescu A; Aminian K
    Med Eng Phys; 2014 Jun; 36(6):739-44. PubMed ID: 24485500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postural Transitions during Activities of Daily Living Could Identify Frailty Status: Application of Wearable Technology to Identify Frailty during Unsupervised Condition.
    Parvaneh S; Mohler J; Toosizadeh N; Grewal GS; Najafi B
    Gerontology; 2017; 63(5):479-487. PubMed ID: 28285311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 55.