BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 12814656)

  • 1. Part I: parkin-associated proteins and Parkinson's disease.
    Dev KK; van der Putten H; Sommer B; Rovelli G
    Neuropharmacology; 2003 Jul; 45(1):1-13. PubMed ID: 12814656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1.
    Zhang Y; Gao J; Chung KK; Huang H; Dawson VL; Dawson TM
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13354-9. PubMed ID: 11078524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parkin-mediated monoubiquitination of the PDZ protein PICK1 regulates the activity of acid-sensing ion channels.
    Joch M; Ase AR; Chen CX; MacDonald PA; Kontogiannea M; Corera AT; Brice A; Séguéla P; Fon EA
    Mol Biol Cell; 2007 Aug; 18(8):3105-18. PubMed ID: 17553932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation.
    Ren Y; Zhao J; Feng J
    J Neurosci; 2003 Apr; 23(8):3316-24. PubMed ID: 12716939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations in the E3 ligases Parkin and CHIP result in unique metabolic signaling defects and mitochondrial quality control issues.
    Lizama BN; Palubinsky AM; McLaughlin B
    Neurochem Int; 2018 Jul; 117():139-155. PubMed ID: 28851515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent reporter of 
    Vozdek R; Wang B; Li KH; Pramstaller PP; Hicks AA; Ma DK
    Open Res Eur; 2022; 2():23. PubMed ID: 37811477
    [No Abstract]   [Full Text] [Related]  

  • 7. Parkin Inhibits Static Mechanical Pain by Suppressing Membrane Trafficking of Mechano-transducing Ion Channel TACAN.
    Lei Y; Xie MX; Cao XY; Zhang X; Xiao YB; Tian XY; Zhu YX; Zhang XL
    Neurosci Bull; 2022 Apr; 38(4):429-434. PubMed ID: 35353345
    [No Abstract]   [Full Text] [Related]  

  • 8. The S-nitrosylation of parkin attenuated the ubiquitination of divalent metal transporter 1 in MPP
    Zhong Y; Li X; Du X; Bi M; Ma F; Xie J; Jiang H
    Sci Rep; 2020 Sep; 10(1):15542. PubMed ID: 32968192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient synthesis of CN2097 using in situ activation of sulfhydryl group.
    Darwish S; Parang K; Marshall J; Goebel DJ; Tiwari R
    Tetrahedron Lett; 2017 Aug; 58(31):3053-3056. PubMed ID: 28824209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between RING1 (R1) and the Ubiquitin-like (UBL) Domains Is Critical for the Regulation of Parkin Activity.
    Ham SJ; Lee SY; Song S; Chung JR; Choi S; Chung J
    J Biol Chem; 2016 Jan; 291(4):1803-1816. PubMed ID: 26631732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manganese homeostasis and transport.
    Roth J; Ponzoni S; Aschner M
    Met Ions Life Sci; 2013; 12():169-201. PubMed ID: 23595673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ubiquitin-proteasome system in retinal health and disease.
    Campello L; Esteve-Rudd J; Cuenca N; Martín-Nieto J
    Mol Neurobiol; 2013 Apr; 47(2):790-810. PubMed ID: 23339020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manganese-induced toxicity in normal and human B lymphocyte cell lines containing a homozygous mutation in parkin.
    Roth JA; Ganapathy B; Ghio AJ
    Toxicol In Vitro; 2012 Oct; 26(7):1143-9. PubMed ID: 22841634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuropathology in mice expressing mouse alpha-synuclein.
    Rieker C; Dev KK; Lehnhoff K; Barbieri S; Ksiazek I; Kauffmann S; Danner S; Schell H; Boden C; Ruegg MA; Kahle PJ; van der Putten H; Shimshek DR
    PLoS One; 2011; 6(9):e24834. PubMed ID: 21966373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of autosomal recessive juvenile Parkinson's disease mutations on the structure and interactions of the parkin ubiquitin-like domain.
    Safadi SS; Barber KR; Shaw GS
    Biochemistry; 2011 Apr; 50(13):2603-10. PubMed ID: 21348451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease.
    Wang H; Song P; Du L; Tian W; Yue W; Liu M; Li D; Wang B; Zhu Y; Cao C; Zhou J; Chen Q
    J Biol Chem; 2011 Apr; 286(13):11649-58. PubMed ID: 21292769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Region-specific protein abundance changes in the brain of MPTP-induced Parkinson's disease mouse model.
    Zhang X; Zhou JY; Chin MH; Schepmoes AA; Petyuk VA; Weitz KK; Petritis BO; Monroe ME; Camp DG; Wood SA; Melega WP; Bigelow DJ; Smith DJ; Qian WJ; Smith RD
    J Proteome Res; 2010 Mar; 9(3):1496-509. PubMed ID: 20155936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential interaction of the E3 ligase parkin with the proteasomal subunit S5a and the endocytic protein Eps15.
    Safadi SS; Shaw GS
    J Biol Chem; 2010 Jan; 285(2):1424-34. PubMed ID: 19875440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parkinson's disease: genetics and beyond.
    Inamdar NN; Arulmozhi DK; Tandon A; Bodhankar SL
    Curr Neuropharmacol; 2007; 5(2):99-113. PubMed ID: 18615181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting protein-protein interactions by rational design: mimicry of protein surfaces.
    Fletcher S; Hamilton AD
    J R Soc Interface; 2006 Apr; 3(7):215-33. PubMed ID: 16849232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.