These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 12814874)
1. Benefits and limitations of modeling for optimization of Porphyridium cruentum cultures in an annular photobioreactor. Muller-Feuga A; Le Guédes R; Pruvost J J Biotechnol; 2003 Jun; 103(2):153-63. PubMed ID: 12814874 [TBL] [Abstract][Full Text] [Related]
2. Swirling flow implementation in a photobioreactor for batch and continuous cultures of Porphyridium cruentum. Muller-Feuga A; Pruvost J; Le Guédes R; Le Déan L; Legentilhomme P; Legrand J Biotechnol Bioeng; 2003 Dec; 84(5):544-51. PubMed ID: 14574688 [TBL] [Abstract][Full Text] [Related]
3. Cell weight kinetics simulation in chemostat and batch culture of the rhodophyte Porphyridium cruentum. Muller-Feuga A; Le Guédes R; Le Déan L Biotechnol Bioeng; 2004 Dec; 88(6):759-66. PubMed ID: 15558597 [TBL] [Abstract][Full Text] [Related]
4. Lipid production in Porphyridium cruentum grown under different culture conditions. Oh SH; Han JG; Kim Y; Ha JH; Kim SS; Jeong MH; Jeong HS; Kim NY; Cho JS; Yoon WB; Lee SY; Kang DH; Lee HY J Biosci Bioeng; 2009 Nov; 108(5):429-34. PubMed ID: 19804869 [TBL] [Abstract][Full Text] [Related]
5. Optimization of renewal regime for improvement of polysaccharides production from Porphyridium cruentum by uniform design. Sun L; Wang C; Ma C; Shi L Bioprocess Biosyst Eng; 2010 Mar; 33(3):309-15. PubMed ID: 19434429 [TBL] [Abstract][Full Text] [Related]
6. Feasibility of attached cultivation for polysaccharides production by Porphyridium cruentum. Lutzu GA; Zhang L; Zhang Z; Liu T Bioprocess Biosyst Eng; 2017 Jan; 40(1):73-83. PubMed ID: 27614620 [TBL] [Abstract][Full Text] [Related]
7. Improvement of Unsaturated Fatty Acid Production from Kim SH; Lee UH; Lee SB; Jeong GT; Kim SK J Microbiol Biotechnol; 2021 Mar; 31(3):456-463. PubMed ID: 33323671 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of batch and semi-continuous culture of Porphyridium purpureum in a photobioreactor in high latitudes using Fourier Transform Infrared spectroscopy for monitoring biomass composition and metabolites production. Fuentes-Grünewald C; Bayliss C; Zanain M; Pooley C; Scolamacchia M; Silkina A Bioresour Technol; 2015; 189():357-363. PubMed ID: 25913882 [TBL] [Abstract][Full Text] [Related]
9. Effects of agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum. Sobczuk TM; Camacho FG; Grima EM; Chisti Y Bioprocess Biosyst Eng; 2006 Mar; 28(4):243-50. PubMed ID: 16247611 [TBL] [Abstract][Full Text] [Related]
10. Modelling of growth and product formation of Porphyridium purpureum. Fleck-Schneider P; Lehr F; Posten C J Biotechnol; 2007 Oct; 132(2):134-41. PubMed ID: 17658642 [TBL] [Abstract][Full Text] [Related]
11. Airlift column photobioreactors for Porphyridium sp. culturing: Part II. verification of dynamic growth rate model for reactor performance evaluation. Luo HP; Al-Dahhan MH Biotechnol Bioeng; 2012 Apr; 109(4):942-9. PubMed ID: 22068388 [TBL] [Abstract][Full Text] [Related]
12. Culture media optimization for growth and phycoerythrin production from Porphyridium purpureum. Kathiresan S; Sarada R; Bhattacharya S; Ravishankar GA Biotechnol Bioeng; 2007 Feb; 96(3):456-63. PubMed ID: 17001641 [TBL] [Abstract][Full Text] [Related]
13. Optimization of bead milling parameters for the cell disruption of microalgae: process modeling and application to Porphyridium cruentum and Nannochloropsis oculata. Montalescot V; Rinaldi T; Touchard R; Jubeau S; Frappart M; Jaouen P; Bourseau P; Marchal L Bioresour Technol; 2015 Nov; 196():339-46. PubMed ID: 26253918 [TBL] [Abstract][Full Text] [Related]
14. State and parameter estimation of microalgal photobioreactor cultures based on local irradiance measurement. Su WW; Li J; Xu NS J Biotechnol; 2003 Oct; 105(1-2):165-78. PubMed ID: 14511917 [TBL] [Abstract][Full Text] [Related]
15. Continuous microalgal cultivation in a laboratory-scale photobioreactor under seasonal day-night irradiation: experiments and simulation. Bertucco A; Beraldi M; Sforza E Bioprocess Biosyst Eng; 2014 Aug; 37(8):1535-42. PubMed ID: 24477881 [TBL] [Abstract][Full Text] [Related]
16. Optimal cultivation towards enhanced biomass and floridean starch production by Porphyridium marinum. Ben Hlima H; Dammak M; Karkouch N; Hentati F; Laroche C; Michaud P; Fendri I; Abdelkafi S Int J Biol Macromol; 2019 May; 129():152-161. PubMed ID: 30711564 [TBL] [Abstract][Full Text] [Related]
17. Airlift column photobioreactors for Porphyridium sp. culturing: part I. effects of hydrodynamics and reactor geometry. Luo HP; Al-Dahhan MH Biotechnol Bioeng; 2012 Apr; 109(4):932-41. PubMed ID: 22068325 [TBL] [Abstract][Full Text] [Related]
18. Improvement of exopolysaccharide production by Porphyridium marinum. Soanen N; Da Silva E; Gardarin C; Michaud P; Laroche C Bioresour Technol; 2016 Aug; 213():231-238. PubMed ID: 26944455 [TBL] [Abstract][Full Text] [Related]
19. Semi-continuous immobilized cultivation of Porphyridium cruentum for sulfated polysaccharides production. Han SI; Jeon MS; Park YH; Kim S; Choi YE Bioresour Technol; 2021 Dec; 341():125816. PubMed ID: 34454230 [TBL] [Abstract][Full Text] [Related]
20. Model-supported phototrophic growth studies with Scenedesmus obtusiusculus in a flat-plate photobioreactor. Koller AP; Löwe H; Schmid V; Mundt S; Weuster-Botz D Biotechnol Bioeng; 2017 Feb; 114(2):308-320. PubMed ID: 27530806 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]