These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 12814956)
1. Effects of benomyl and drought on the mycorrhizal development and daily net CO2 uptake of a wild platyopuntia in a rocky semi-arid environment. Pimienta-Barrios E; Gonzalez del Castillo-Aranda ME; Munoz-Urias A; Nobel PS Ann Bot; 2003 Aug; 92(2):239-45. PubMed ID: 12814956 [TBL] [Abstract][Full Text] [Related]
2. Topsin-M: the new benomyl for mycorrhizal-suppression experiments. Wilson GW; Williamson MM Mycologia; 2008; 100(4):548-54. PubMed ID: 18833748 [TBL] [Abstract][Full Text] [Related]
3. The fate and efficacy of benomyl applied to field soils to suppress activity of arbuscular mycorrhizal fungi. O'Connor P; Manjarrez M; Smith SE Can J Microbiol; 2009 Jul; 55(7):901-4. PubMed ID: 19767864 [TBL] [Abstract][Full Text] [Related]
4. Young daughter cladodes affect CO2 uptake by mother cladodes of Opuntia ficus-indica. Pimienta-Barrios E; Zañudo-Hernandez J; Rosas-Espinoza VC; Valenzuela-Tapia A; Nobel PS Ann Bot; 2005 Jan; 95(2):363-9. PubMed ID: 15567805 [TBL] [Abstract][Full Text] [Related]
5. Effect of arbuscular mycorrhizal fungi on phytoextraction by corn (Zea mays) of lead-contaminated soil. Hovsepyan A; Greipsson S Int J Phytoremediation; 2004; 6(4):305-21. PubMed ID: 15696704 [TBL] [Abstract][Full Text] [Related]
6. Mycorrhizal colonisation and P-supplement effects on N uptake and N assimilation in perennial ryegrass under well-watered and drought-stressed conditions. Lee BR; Muneer S; Avice JC; Jung WJ; Kim TH Mycorrhiza; 2012 Oct; 22(7):525-34. PubMed ID: 22349921 [TBL] [Abstract][Full Text] [Related]
7. Effects of fungicide treatments on mycorrhizal communities and carbon acquisition in the mixotrophic Pyrola japonica (Ericaceae). Sakae K; Kawai S; Kitagami Y; Matsuo N; Selosse MA; Tanikawa T; Matsuda Y Mycorrhiza; 2024 Jul; 34(4):293-302. PubMed ID: 38922410 [TBL] [Abstract][Full Text] [Related]
8. [Effects of three fungicides on arbuscular mycorrhizal fungal infection and growth of Scutellaria baicalensis Georgi]. He XL; Wang P; Ma L; Meng JJ Huan Jing Ke Xue; 2012 Mar; 33(3):987-91. PubMed ID: 22624398 [TBL] [Abstract][Full Text] [Related]
9. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Khalvati MA; Hu Y; Mozafar A; Schmidhalter U Plant Biol (Stuttg); 2005 Nov; 7(6):706-12. PubMed ID: 16388474 [TBL] [Abstract][Full Text] [Related]
10. Seasonal photosynthetic gas exchange and water-use efficiency in a constitutive CAM plant, the giant saguaro cactus (Carnegiea gigantea). Bronson DR; English NB; Dettman DL; Williams DG Oecologia; 2011 Nov; 167(3):861-71. PubMed ID: 21822726 [TBL] [Abstract][Full Text] [Related]
11. Growth, respiration and nutrient acquisition by the arbuscular mycorrhizal fungus Glomus mosseae and its host plant Plantago lanceolata in cooled soil. Karasawa T; Hodge A; Fitter AH Plant Cell Environ; 2012 Apr; 35(4):819-28. PubMed ID: 22070553 [TBL] [Abstract][Full Text] [Related]
12. Topographic position modulates the mycorrhizal response of oak trees to interannual rainfall variability. Querejeta JI; Egerton-Warburton LM; Allen MF Ecology; 2009 Mar; 90(3):649-62. PubMed ID: 19341136 [TBL] [Abstract][Full Text] [Related]
13. Arbuscular mycorrhizal fungi and plant symbiosis in a saline-sodic soil. García IV; Mendoza RE Mycorrhiza; 2007 May; 17(3):167-174. PubMed ID: 17151877 [TBL] [Abstract][Full Text] [Related]
14. Growth and reproductive characteristics of the columnar cactus Stenocereus queretaroensis and their relationships with environmental factors and colonization by arbuscular mycorrhizae. Pimienta-Barrios E; Pimienta-Barrios E; Salas-Galván ME; Zañudo-Hernandez J; Nobel PS Tree Physiol; 2002 Jun; 22(9):667-74. PubMed ID: 12069924 [TBL] [Abstract][Full Text] [Related]
15. Arbuscular Mycorrhizal Symbiosis with Arundo donax Decreases Root Respiration and Increases Both Photosynthesis and Plant Biomass Accumulation. Romero-Munar A; Del-Saz NF; Ribas-Carbó M; Flexas J; Baraza E; Florez-Sarasa I; Fernie AR; Gulías J Plant Cell Environ; 2017 Jul; 40(7):1115-1126. PubMed ID: 28060998 [TBL] [Abstract][Full Text] [Related]
16. Differential effects of Pseudomonas mendocina and Glomus intraradices on lettuce plants physiological response and aquaporin PIP2 gene expression under elevated atmospheric CO2 and drought. Alguacil Mdel M; Kohler J; Caravaca F; Roldán A Microb Ecol; 2009 Nov; 58(4):942-51. PubMed ID: 19495853 [TBL] [Abstract][Full Text] [Related]
17. Effects of two contrasted arbuscular mycorrhizal fungal isolates on nutrient uptake by Sorghum bicolor under drought. Symanczik S; Lehmann MF; Wiemken A; Boller T; Courty PE Mycorrhiza; 2018 Nov; 28(8):779-785. PubMed ID: 30006910 [TBL] [Abstract][Full Text] [Related]
19. Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Birhane E; Sterck FJ; Fetene M; Bongers F; Kuyper TW Oecologia; 2012 Aug; 169(4):895-904. PubMed ID: 22286084 [TBL] [Abstract][Full Text] [Related]
20. Impairment of NtAQP1 gene expression in tobacco plants does not affect root colonisation pattern by arbuscular mycorrhizal fungi but decreases their symbiotic efficiency under drought. Porcel R; Gómez M; Kaldenhoff R; Ruiz-Lozano JM Mycorrhiza; 2005 Sep; 15(6):417-23. PubMed ID: 15906101 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]