BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 12815013)

  • 1. Watermaze learning enhances excitability of CA1 pyramidal neurons.
    Oh MM; Kuo AG; Wu WW; Sametsky EA; Disterhoft JF
    J Neurophysiol; 2003 Oct; 90(4):2171-9. PubMed ID: 12815013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of alphaCaMKII mutation on hippocampal learning and changes in intrinsic neuronal excitability.
    Ohno M; Sametsky EA; Silva AJ; Disterhoft JF
    Eur J Neurosci; 2006 Apr; 23(8):2235-40. PubMed ID: 16630070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning-dependent plasticity of hippocampal CA1 pyramidal neuron postburst afterhyperpolarizations and increased excitability after inhibitory avoidance learning depend upon basolateral amygdala inputs.
    Farmer GE; Thompson LT
    Hippocampus; 2012 Aug; 22(8):1703-19. PubMed ID: 22367983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cellular correlate of learning-induced metaplasticity in the hippocampus.
    Zelcer I; Cohen H; Richter-Levin G; Lebiosn T; Grossberger T; Barkai E
    Cereb Cortex; 2006 Apr; 16(4):460-8. PubMed ID: 15958777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient changes in excitability of rabbit CA3 neurons with a time course appropriate to support memory consolidation.
    Thompson LT; Moyer JR; Disterhoft JF
    J Neurophysiol; 1996 Sep; 76(3):1836-49. PubMed ID: 8890296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow afterhyperpolarization governs the development of NMDA receptor-dependent afterdepolarization in CA1 pyramidal neurons during synaptic stimulation.
    Wu WW; Chan CS; Disterhoft JF
    J Neurophysiol; 2004 Oct; 92(4):2346-56. PubMed ID: 15190096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning-induced reversal of the effect of noradrenalin on the postburst AHP.
    Brosh I; Rosenblum K; Barkai E
    J Neurophysiol; 2006 Oct; 96(4):1728-33. PubMed ID: 16823026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biophysical alterations of hippocampal pyramidal neurons in learning, ageing and Alzheimer's disease.
    Disterhoft JF; Wu WW; Ohno M
    Ageing Res Rev; 2004 Nov; 3(4):383-406. PubMed ID: 15541708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations in intrinsic neuronal excitability during normal aging.
    Disterhoft JF; Oh MM
    Aging Cell; 2007 Jun; 6(3):327-36. PubMed ID: 17517042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of excitotoxic lesions of the CA1 region of the hippocampus on acquisition of a place and cue water maze task.
    Maglakelidze G; Beselia G; Chkhikvishvili N; Burjanadze M; Dashniani M
    Georgian Med News; 2010 Jan; (178):56-60. PubMed ID: 20157209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiac arrest with cardiopulmonary resuscitation reduces dendritic spine density in CA1 pyramidal cells and selectively alters acquisition of spatial memory.
    Neigh GN; Glasper ER; Kofler J; Traystman RJ; Mervis RF; Bachstetter A; DeVries AC
    Eur J Neurosci; 2004 Oct; 20(7):1865-72. PubMed ID: 15380008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diabetes impairs learning performance through affecting membrane excitability of hippocampal pyramidal neurons.
    Heng LJ; Yang RH; Jia D
    Behav Brain Res; 2011 Oct; 224(2):250-8. PubMed ID: 21722676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-related biophysical alterations of hippocampal pyramidal neurons: implications for learning and memory.
    Wu WW; Oh MM; Disterhoft JF
    Ageing Res Rev; 2002 Apr; 1(2):181-207. PubMed ID: 12039438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic mechanisms of the effects of sleep deprivation on excitability in hippocampal pyramidal neurons.
    Yang RH; Wang WT; Hou XH; Hu SJ; Chen JY
    Brain Res; 2010 Jul; 1343():135-42. PubMed ID: 20471377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning and aging affect neuronal excitability and learning.
    Oh MM; Disterhoft JF
    Neurobiol Learn Mem; 2020 Jan; 167():107133. PubMed ID: 31786311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential induction of c-Jun and Fos-like proteins in rat hippocampus and dorsal striatum after training in two water maze tasks.
    Teather LA; Packard MG; Smith DE; Ellis-Behnke RG; Bazan NG
    Neurobiol Learn Mem; 2005 Sep; 84(2):75-84. PubMed ID: 15936959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential behavioral state-dependence in the burst properties of CA3 and CA1 neurons.
    Tropp Sneider J; Chrobak JJ; Quirk MC; Oler JA; Markus EJ
    Neuroscience; 2006 Sep; 141(4):1665-77. PubMed ID: 16843607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reappearance of hippocampal CA1 neurons after ischemia is associated with recovery of learning and memory.
    Bendel O; Bueters T; von Euler M; Ove Ogren S; Sandin J; von Euler G
    J Cereb Blood Flow Metab; 2005 Dec; 25(12):1586-95. PubMed ID: 15917746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced neuronal excitability in rat CA1 pyramidal neurons following trace eyeblink conditioning acquisition is not due to alterations in I M.
    Kuo AG; Lee G; McKay BM; Disterhoft JF
    Neurobiol Learn Mem; 2008 Feb; 89(2):125-33. PubMed ID: 17703960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells.
    Gu N; Vervaeke K; Hu H; Storm JF
    J Physiol; 2005 Aug; 566(Pt 3):689-715. PubMed ID: 15890705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.