These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 12815016)

  • 1. Spectrotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex.
    Linden JF; Liu RC; Sahani M; Schreiner CE; Merzenich MM
    J Neurophysiol; 2003 Oct; 90(4):2660-75. PubMed ID: 12815016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of responses in the anterior and primary auditory fields of the ferret cortex.
    Kowalski N; Versnel H; Shamma SA
    J Neurophysiol; 1995 Apr; 73(4):1513-23. PubMed ID: 7643163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modular functional organization of cat anterior auditory field.
    Imaizumi K; Priebe NJ; Crum PA; Bedenbaugh PH; Cheung SW; Schreiner CE
    J Neurophysiol; 2004 Jul; 92(1):444-57. PubMed ID: 15014102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiparametric auditory receptive field organization across five cortical fields in the albino rat.
    Polley DB; Read HL; Storace DA; Merzenich MM
    J Neurophysiol; 2007 May; 97(5):3621-38. PubMed ID: 17376842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectrotemporal organization of excitatory and inhibitory receptive fields of cat posterior auditory field neurons.
    Loftus WC; Sutter ML
    J Neurophysiol; 2001 Jul; 86(1):475-91. PubMed ID: 11431526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Representation of spectral and temporal sound features in three cortical fields of the cat. Similarities outweigh differences.
    Eggermont JJ
    J Neurophysiol; 1998 Nov; 80(5):2743-64. PubMed ID: 9819278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex.
    Miller LM; Escabí MA; Read HL; Schreiner CE
    J Neurophysiol; 2002 Jan; 87(1):516-27. PubMed ID: 11784767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasticity of Multidimensional Receptive Fields in Core Rat Auditory Cortex Directed by Sound Statistics.
    Homma NY; Atencio CA; Schreiner CE
    Neuroscience; 2021 Jul; 467():150-170. PubMed ID: 33951506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional organization of auditory cortex in the mongolian gerbil (Meriones unguiculatus). I. Electrophysiological mapping of frequency representation and distinction of fields.
    Thomas H; Tillein J; Heil P; Scheich H
    Eur J Neurosci; 1993 Jul; 5(7):882-97. PubMed ID: 8281300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The response properties of neurons in different fields of the auditory cortex in the rat.
    Profant O; Burianová J; Syka J
    Hear Res; 2013 Feb; 296():51-9. PubMed ID: 23220149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectrotemporal receptive field properties of single units in the primary, dorsocaudal and ventrorostral auditory cortex of the guinea pig.
    Rutkowski RG; Shackleton TM; Schnupp JW; Wallace MN; Palmer AR
    Audiol Neurootol; 2002; 7(4):214-27. PubMed ID: 12097721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulus-invariant processing and spectrotemporal reverse correlation in primary auditory cortex.
    Klein DJ; Simon JZ; Depireux DA; Shamma SA
    J Comput Neurosci; 2006 Apr; 20(2):111-36. PubMed ID: 16518572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The consequences of response nonlinearities for interpretation of spectrotemporal receptive fields.
    Christianson GB; Sahani M; Linden JF
    J Neurosci; 2008 Jan; 28(2):446-55. PubMed ID: 18184787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear cross-frequency interactions in primary auditory cortex spectrotemporal receptive fields: a Wiener-Volterra analysis.
    Pienkowski M; Eggermont JJ
    J Comput Neurosci; 2010 Apr; 28(2):285-303. PubMed ID: 20072806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional organization of auditory cortex in the mongolian gerbil (Meriones unguiculatus). II. Tonotopic 2-deoxyglucose.
    Scheich H; Heil P; Langner G
    Eur J Neurosci; 1993 Jul; 5(7):898-914. PubMed ID: 8281301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcranial photo-inactivation of neural activities in the mouse auditory cortex.
    Kubota Y; Kamatani D; Tsukano H; Ohshima S; Takahashi K; Hishida R; Kudoh M; Takahashi S; Shibuki K
    Neurosci Res; 2008 Apr; 60(4):422-30. PubMed ID: 18291543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct Manifestations of Cooperative, Multidimensional Stimulus Representations in Different Auditory Forebrain Stations.
    Shih JY; Yuan K; Atencio CA; Schreiner CE
    Cereb Cortex; 2020 May; 30(5):3130-3147. PubMed ID: 32047882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping the human auditory cortex using spectrotemporal receptive fields generated with magnetoencephalography.
    Falet JR; Côté J; Tarka V; Martínez-Moreno ZE; Voss P; de Villers-Sidani E
    Neuroimage; 2021 Sep; 238():118222. PubMed ID: 34058330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes of AI receptive fields with sound density.
    Blake DT; Merzenich MM
    J Neurophysiol; 2002 Dec; 88(6):3409-20. PubMed ID: 12466457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectrotemporal processing in spectral tuning modules of cat primary auditory cortex.
    Atencio CA; Schreiner CE
    PLoS One; 2012; 7(2):e31537. PubMed ID: 22384036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.