BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 12815064)

  • 1. The caspase-like sites of proteasomes, their substrate specificity, new inhibitors and substrates, and allosteric interactions with the trypsin-like sites.
    Kisselev AF; Garcia-Calvo M; Overkleeft HS; Peterson E; Pennington MW; Ploegh HL; Thornberry NA; Goldberg AL
    J Biol Chem; 2003 Sep; 278(38):35869-77. PubMed ID: 12815064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of hydrophobic peptides to several non-catalytic sites promotes peptide hydrolysis by all active sites of 20 S proteasomes. Evidence for peptide-induced channel opening in the alpha-rings.
    Kisselev AF; Kaganovich D; Goldberg AL
    J Biol Chem; 2002 Jun; 277(25):22260-70. PubMed ID: 11927581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic properties of 26 S and 20 S proteasomes and radiolabeling of MB1, LMP7, and C7 subunits associated with trypsin-like and chymotrypsin-like activities.
    Reidlinger J; Pike AM; Savory PJ; Murray RZ; Rivett AJ
    J Biol Chem; 1997 Oct; 272(40):24899-905. PubMed ID: 9312091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteasome active sites allosterically regulate each other, suggesting a cyclical bite-chew mechanism for protein breakdown.
    Kisselev AF; Akopian TN; Castillo V; Goldberg AL
    Mol Cell; 1999 Sep; 4(3):395-402. PubMed ID: 10518220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate.
    Kisselev AF; Callard A; Goldberg AL
    J Biol Chem; 2006 Mar; 281(13):8582-90. PubMed ID: 16455650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bifunctional inhibitors of the trypsin-like activity of eukaryotic proteasomes.
    Loidl G; Groll M; Musiol HJ; Ditzel L; Huber R; Moroder L
    Chem Biol; 1999 Apr; 6(4):197-204. PubMed ID: 10099130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lack of proteasome active site allostery as revealed by subunit-specific inhibitors.
    Myung J; Kim KB; Lindsten K; Dantuma NP; Crews CM
    Mol Cell; 2001 Feb; 7(2):411-20. PubMed ID: 11239469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proline- and arginine-rich peptides constitute a novel class of allosteric inhibitors of proteasome activity.
    Gaczynska M; Osmulski PA; Gao Y; Post MJ; Simons M
    Biochemistry; 2003 Jul; 42(29):8663-70. PubMed ID: 12873125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring activity and inhibition of 26S proteasomes with fluorogenic peptide substrates.
    Kisselev AF; Goldberg AL
    Methods Enzymol; 2005; 398():364-78. PubMed ID: 16275343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for the existence of a non-catalytic modifier site of peptide hydrolysis by the 20 S proteasome.
    Schmidtke G; Emch S; Groettrup M; Holzhutter HG
    J Biol Chem; 2000 Jul; 275(29):22056-63. PubMed ID: 10806206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous fluorescent monitoring of proteasomal subunit catalysis.
    Wakata A; Lee HM; Rommel P; Toutchkine A; Schmidt M; Lawrence DS
    J Am Chem Soc; 2010 Feb; 132(5):1578-82. PubMed ID: 20078037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteasome-mediated degradation of tau proteins occurs independently of the chymotrypsin-like activity by a nonprocessive pathway.
    Cardozo C; Michaud C
    Arch Biochem Biophys; 2002 Dec; 408(1):103-10. PubMed ID: 12485608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective inhibitor of proteasome's caspase-like sites sensitizes cells to specific inhibition of chymotrypsin-like sites.
    Britton M; Lucas MM; Downey SL; Screen M; Pletnev AA; Verdoes M; Tokhunts RA; Amir O; Goddard AL; Pelphrey PM; Wright DL; Overkleeft HS; Kisselev AF
    Chem Biol; 2009 Dec; 16(12):1278-89. PubMed ID: 20064438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, kinetic characterization and X-ray analysis of peptide aldehydes as inhibitors of the 20S proteasomes from Thermoplasma acidophilum and Saccharomyces cerevisiae.
    Escherich A; Ditzel L; Musiol HJ; Groll M; Huber R; Moroder L
    Biol Chem; 1997 Aug; 378(8):893-8. PubMed ID: 9377486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific inhibition of the chymotrypsin-like activity of the proteasome induces a bipolar morphology in neuroblastoma cells.
    Fenteany G; Schreiber SL
    Chem Biol; 1996 Nov; 3(11):905-12. PubMed ID: 8939705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of bivalent inhibitors of eucaryotic proteasomes.
    Loidl G; Musiol HJ; Groll M; Huber R; Moroder L
    J Pept Sci; 2000 Jan; 6(1):36-46. PubMed ID: 10674718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extended peptide-based inhibitors efficiently target the proteasome and reveal overlapping specificities of the catalytic beta-subunits.
    Kessler BM; Tortorella D; Altun M; Kisselev AF; Fiebiger E; Hekking BG; Ploegh HL; Overkleeft HS
    Chem Biol; 2001 Sep; 8(9):913-29. PubMed ID: 11564559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards subunit-specific proteasome inhibitors: synthesis and evaluation of peptide alpha',beta'-epoxyketones.
    Elofsson M; Splittgerber U; Myung J; Mohan R; Crews CM
    Chem Biol; 1999 Nov; 6(11):811-22. PubMed ID: 10574782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteasome activities decrease during dexamethasone-induced apoptosis of thymocytes.
    Beyette J; Mason GG; Murray RZ; Cohen GM; Rivett AJ
    Biochem J; 1998 Jun; 332 ( Pt 2)(Pt 2):315-20. PubMed ID: 9601058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional characterization of 20S and 26S proteasomes from bovine brain.
    Piccinini M; Tazartes O; Mostert M; Musso A; DeMarchi M; Rinaudo MT
    Brain Res Mol Brain Res; 2000 Mar; 76(1):103-14. PubMed ID: 10719220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.