These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 1281541)

  • 1. Suppression of the onset of myelination extends the permissive period for the functional repair of embryonic spinal cord.
    Keirstead HS; Hasan SJ; Muir GD; Steeves JD
    Proc Natl Acad Sci U S A; 1992 Dec; 89(24):11664-8. PubMed ID: 1281541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Axonal regeneration and physiological activity following transection and immunological disruption of myelin within the hatchling chick spinal cord.
    Keirstead HS; Dyer JK; Sholomenko GN; McGraw J; Delaney KR; Steeves JD
    J Neurosci; 1995 Oct; 15(10):6963-74. PubMed ID: 7472453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axonal regeneration contributes to repair of injured brainstem-spinal neurons in embryonic chick.
    Hasan SJ; Keirstead HS; Muir GD; Steeves JD
    J Neurosci; 1993 Feb; 13(2):492-507. PubMed ID: 8426225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anatomical and functional recovery following spinal cord transection in the chick embryo.
    Shimizu I; Oppenheim RW; O'Brien M; Shneiderman A
    J Neurobiol; 1990 Sep; 21(6):918-37. PubMed ID: 2077104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo immunological suppression of spinal cord myelin development.
    Keirstead HS; Pataky DM; McGraw J; Steeves JD
    Brain Res Bull; 1997; 44(6):727-34. PubMed ID: 9421137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional repair of transected spinal cord in embryonic chick.
    Hasan SJ; Nelson BH; Valenzuela JI; Keirstead HS; Shull SE; Ethell DW; Steeves JD
    Restor Neurol Neurosci; 1991 Jan; 2(3):137-54. PubMed ID: 21551594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in protein expression associated with the developmental transition from permissive to restrictive states of spinal cord repair in embryonic chick.
    Ethell DW; Steeves JD
    Brain Res Dev Brain Res; 1993 Dec; 76(2):163-9. PubMed ID: 8149582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caspase inhibition attenuates transection-induced oligodendrocyte apoptosis in the developing chick spinal cord.
    McBride CB; McPhail LT; Vanderluit JL; Tetzlaff W; Steeves JD
    Mol Cell Neurosci; 2003 Jul; 23(3):383-97. PubMed ID: 12837623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transplantation of embryonic spinal cord-derived neurospheres support growth of supraspinal projections and functional recovery after spinal cord injury in the neonatal rat.
    Nakamura M; Okano H; Toyama Y; Dai HN; Finn TP; Bregman BS
    J Neurosci Res; 2005 Aug; 81(4):457-68. PubMed ID: 15968644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Schwann cells engineered to express the cell adhesion molecule L1 accelerate myelination and motor recovery after spinal cord injury.
    Lavdas AA; Chen J; Papastefanaki F; Chen S; Schachner M; Matsas R; Thomaidou D
    Exp Neurol; 2010 Jan; 221(1):206-16. PubMed ID: 19909742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional differences in myelination of chick vestibulocochlear ganglion cells.
    Sun YJ; Kobayashi H; Yoshida S; Shirasawa N; Naito A
    Int J Dev Neurosci; 2013 Nov; 31(7):568-79. PubMed ID: 23872348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental transition by spinal cord plasma membranes of embryonic chick from permissive to restrictive substrates for the morphological differentiation of neuroblastoma x glioma hybrid NG108-15 cell.
    Ethell DW; Steeves JD; Jordan LM; Cheng KW
    Brain Res Dev Brain Res; 1993 Mar; 72(1):1-8. PubMed ID: 8453760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular correlates of spinal cord repair in the embryonic chick: heparan sulfate and chondroitin sulfate proteoglycans.
    Dow KE; Ethell DW; Steeves JD; Riopelle RJ
    Exp Neurol; 1994 Aug; 128(2):233-8. PubMed ID: 8076667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Permissive and restrictive periods for brainstem-spinal regeneration in the chick.
    Steeves JD; Keirstead HS; Ethell DW; Hasan SJ; Muir GD; Pataky DM; McBride CB; Petrausch B; Zwimpfer TJ
    Prog Brain Res; 1994; 103():243-62. PubMed ID: 7886209
    [No Abstract]   [Full Text] [Related]  

  • 15. Changes within maturing neurons limit axonal regeneration in the developing spinal cord.
    Blackmore M; Letourneau PC
    J Neurobiol; 2006 Mar; 66(4):348-60. PubMed ID: 16408302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raphe-spinal neurons display an age-dependent differential capacity for neurite outgrowth compared to other brainstem-spinal populations.
    Borisoff JF; Pataky DM; McBride CB; Steeves JD
    Exp Neurol; 2000 Nov; 166(1):16-28. PubMed ID: 11031080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in response to spinal cord injury with development: vascularization, hemorrhage and apoptosis.
    Whalley K; O'Neill P; Ferretti P
    Neuroscience; 2006 Feb; 137(3):821-32. PubMed ID: 16289582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promoting axonal myelination for improving neurological recovery in spinal cord injury.
    Wu B; Ren X
    J Neurotrauma; 2009 Oct; 26(10):1847-56. PubMed ID: 19785544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Myelination of the fibres of the spinal cord in the chicken embryo].
    Del Grande P
    Riv Biol; 1974; 67(4):423-44. PubMed ID: 4467295
    [No Abstract]   [Full Text] [Related]  

  • 20. Conduction of impulses by axons regenerated in a Schwann cell graft in the transected adult rat thoracic spinal cord.
    Pinzon A; Calancie B; Oudega M; Noga BR
    J Neurosci Res; 2001 Jun; 64(5):533-41. PubMed ID: 11391708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.