These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 12815679)
1. Density of organic matrix of native mineralized bone measured by water- and fat-suppressed proton projection MRI. Wu Y; Ackerman JL; Chesler DA; Graham L; Wang Y; Glimcher MJ Magn Reson Med; 2003 Jul; 50(1):59-68. PubMed ID: 12815679 [TBL] [Abstract][Full Text] [Related]
2. Water- and fat-suppressed proton projection MRI (WASPI) of rat femur bone. Wu Y; Dai G; Ackerman JL; Hrovat MI; Glimcher MJ; Snyder BD; Nazarian A; Chesler DA Magn Reson Med; 2007 Mar; 57(3):554-67. PubMed ID: 17326184 [TBL] [Abstract][Full Text] [Related]
3. Quantitative bone matrix density measurement by water- and fat-suppressed proton projection MRI (WASPI) with polymer calibration phantoms. Cao H; Ackerman JL; Hrovat MI; Graham L; Glimcher MJ; Wu Y Magn Reson Med; 2008 Dec; 60(6):1433-43. PubMed ID: 19025909 [TBL] [Abstract][Full Text] [Related]
4. Bone matrix imaged in vivo by water- and fat-suppressed proton projection MRI (WASPI) of animal and human subjects. Wu Y; Hrovat MI; Ackerman JL; Reese TG; Cao H; Ecklund K; Glimcher MJ J Magn Reson Imaging; 2010 Apr; 31(4):954-63. PubMed ID: 20373441 [TBL] [Abstract][Full Text] [Related]
5. Continuous MR bone density measurement using water- and fat-suppressed projection imaging (WASPI) for PET attenuation correction in PET-MR. Huang C; Ouyang J; Reese TG; Wu Y; El Fakhri G; Ackerman JL Phys Med Biol; 2015 Oct; 60(20):N369-81. PubMed ID: 26405761 [TBL] [Abstract][Full Text] [Related]
6. Quantitative (31)P NMR spectroscopy and (1)H MRI measurements of bone mineral and matrix density differentiate metabolic bone diseases in rat models. Cao H; Nazarian A; Ackerman JL; Snyder BD; Rosenberg AE; Nazarian RM; Hrovat MI; Dai G; Mintzopoulos D; Wu Y Bone; 2010 Jun; 46(6):1582-90. PubMed ID: 20188225 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of bone mineral density using three-dimensional solid state phosphorus-31 NMR projection imaging. Wu Y; Ackerman JL; Chesler DA; Li J; Neer RM; Wang J; Glimcher MJ Calcif Tissue Int; 1998 Jun; 62(6):512-8. PubMed ID: 9576979 [TBL] [Abstract][Full Text] [Related]
8. T2, Carr-Purcell T2 and T1rho of fat and water as surrogate markers of trabecular bone structure. Lammentausta E; Silvast TS; Närväinen J; Jurvelin JS; Nieminen MT; Gröhn OH Phys Med Biol; 2008 Feb; 53(3):543-55. PubMed ID: 18199901 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of bound and pore water in cortical bone using ultrashort-TE MRI. Chen J; Grogan SP; Shao H; D'Lima D; Bydder GM; Wu Z; Du J NMR Biomed; 2015 Dec; 28(12):1754-1762. PubMed ID: 26527298 [TBL] [Abstract][Full Text] [Related]
10. Validation of bone marrow fat quantification in the presence of trabecular bone using MRI. Gee CS; Nguyen JT; Marquez CJ; Heunis J; Lai A; Wyatt C; Han M; Kazakia G; Burghardt AJ; Karampinos DC; Carballido-Gamio J; Krug R J Magn Reson Imaging; 2015 Aug; 42(2):539-44. PubMed ID: 25425074 [TBL] [Abstract][Full Text] [Related]
11. Imaging of water and fat fractions in high-field MRI with multiple slice chemical shift-selective inversion recovery. Laurent WM; Bonny JM; Renou JP J Magn Reson Imaging; 2000 Sep; 12(3):488-96. PubMed ID: 10992317 [TBL] [Abstract][Full Text] [Related]
13. Radiofrequency pulses for simultaneous short T2 excitation and long T2 suppression. Carl M; Bydder M; Du J; Han E Magn Reson Med; 2011 Feb; 65(2):531-7. PubMed ID: 20872861 [TBL] [Abstract][Full Text] [Related]
14. Measurement of phosphorus content in normal and osteomalacic rabbit bone by solid-state 3D radial imaging. Anumula S; Magland J; Wehrli SL; Zhang H; Ong H; Song HK; Wehrli FW Magn Reson Med; 2006 Nov; 56(5):946-52. PubMed ID: 17041893 [TBL] [Abstract][Full Text] [Related]
15. Raman spectral classification of mineral- and collagen-bound water's associations to elastic and post-yield mechanical properties of cortical bone. Unal M; Akkus O Bone; 2015 Dec; 81():315-326. PubMed ID: 26211992 [TBL] [Abstract][Full Text] [Related]
16. Mineral anisotropy in mineralized tissues is similar among species and mineral growth occurs independently of collagen orientation in rats: results from acoustic velocity measurements. Takano Y; Turner CH; Burr DB J Bone Miner Res; 1996 Sep; 11(9):1292-301. PubMed ID: 8864904 [TBL] [Abstract][Full Text] [Related]
17. Measuring bone mineral density with fat-water MRI: comparison with computed tomography. Ho KY; Hu HH; Keyak JH; Colletti PM; Powers CM J Magn Reson Imaging; 2013 Jan; 37(1):237-42. PubMed ID: 22782698 [TBL] [Abstract][Full Text] [Related]
18. Highly ordered interstitial water observed in bone by nuclear magnetic resonance. Wilson EE; Awonusi A; Morris MD; Kohn DH; Tecklenburg MM; Beck LW J Bone Miner Res; 2005 Apr; 20(4):625-34. PubMed ID: 15765182 [TBL] [Abstract][Full Text] [Related]
19. Extracellular post-translational modifications of collagen are major determinants of biomechanical properties of fetal bovine cortical bone. Garnero P; Borel O; Gineyts E; Duboeuf F; Solberg H; Bouxsein ML; Christiansen C; Delmas PD Bone; 2006 Mar; 38(3):300-9. PubMed ID: 16271523 [TBL] [Abstract][Full Text] [Related]
20. Measurement of trabecular bone thickness in the limited resolution regime of in vivo MRI by fuzzy distance transform. Saha PK; Wehrli FW IEEE Trans Med Imaging; 2004 Jan; 23(1):53-62. PubMed ID: 14719687 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]