BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 12815855)

  • 21. Morphology of mitochondrial permeability transition: morphometric volumetry in apoptotic cells.
    Sesso A; Marques MM; Monteiro MM; Schumacher RI; Colquhoun A; Belizário J; Konno SN; Felix TB; Botelho LA; Santos VZ; Da Silva GR; Higuchi Mde L; Kawakami JT
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Dec; 281(2):1337-51. PubMed ID: 15532021
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Energy metabolism in wheat root cells under modification of plasma membrane permeability by antibiotic nystatin].
    Gordon LKh; Valitova IuN; Ogorodnikova TI; Rakhmatullina DF; Aliab'ev AIu; Loseva NL; Tsentsevitskiĭ AN; Ruban NF
    Tsitologiia; 2005; 47(12):1088-94. PubMed ID: 16706197
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorescence assay for mitochondrial permeability transition in cardiomyocytes cultured in a microtiter plate.
    Christensen ML; Braunstein TH; Treiman M
    Anal Biochem; 2008 Jul; 378(1):25-31. PubMed ID: 18417075
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Abnormal permeability of inner and outer mitochondrial membranes contributes independently to mitochondrial dysfunction in the liver during acute endotoxemia.
    Crouser ED; Julian MW; Huff JE; Joshi MS; Bauer JA; Gadd ME; Wewers MD; Pfeiffer DR
    Crit Care Med; 2004 Feb; 32(2):478-88. PubMed ID: 14758167
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discrimination between two steps in the mitochondrial permeability transition process.
    Ricchelli F; Jori G; Gobbo S; Nikolov P; Petronilli V
    Int J Biochem Cell Biol; 2005 Sep; 37(9):1858-68. PubMed ID: 15878839
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in intracellular sodium, chlorine, and potassium concentrations in staurosporine-induced apoptosis.
    Arrebola F; Zabiti S; Cañizares FJ; Cubero MA; Crespo PV; Fernández-Segura E
    J Cell Physiol; 2005 Aug; 204(2):500-7. PubMed ID: 15717314
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mathematical model of mitochondrial ionic homeostasis: three modes of Ca2+ transport.
    Pokhilko AV; Ataullakhanov FI; Holmuhamedov EL
    J Theor Biol; 2006 Nov; 243(1):152-69. PubMed ID: 16859713
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of succinate-linked respiration and complex II activity by hydrogen peroxide.
    Moser MD; Matsuzaki S; Humphries KM
    Arch Biochem Biophys; 2009 Aug; 488(1):69-75. PubMed ID: 19540189
    [TBL] [Abstract][Full Text] [Related]  

  • 29. pH dependence of proton translocation in the oxidative and reductive phases of the catalytic cycle of cytochrome c oxidase. The role of H2O produced at the oxygen-reduction site.
    Capitanio G; Martino PL; Capitanio N; De Nitto E; Papa S
    Biochemistry; 2006 Feb; 45(6):1930-7. PubMed ID: 16460039
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of NH4Cl-induced systemic metabolic acidosis on kidney mitochondrial coupling and calcium transport in rats.
    Bento LM; Fagian MM; Vercesi AE; Gontijo JA
    Nephrol Dial Transplant; 2007 Oct; 22(10):2817-23. PubMed ID: 17556421
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Ultrastructural characteristics of mitochondria during cell adaptation to rotenone].
    Bufetov EN; Polygalova OO; Ponomareva AA
    Tsitologiia; 2004; 46(11):985-92. PubMed ID: 15704879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Na+-pyrophosphatase: a novel primary sodium pump.
    Malinen AM; Belogurov GA; Baykov AA; Lahti R
    Biochemistry; 2007 Jul; 46(30):8872-8. PubMed ID: 17605473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conformations of NhaA, the Na/H exchanger from Escherichia coli, in the pH-activated and ion-translocating states.
    Appel M; Hizlan D; Vinothkumar KR; Ziegler C; Kühlbrandt W
    J Mol Biol; 2009 Feb; 386(2):351-65. PubMed ID: 19135453
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondrial membrane permeabilization: the sine qua non for cell death.
    Armstrong JS
    Bioessays; 2006 Mar; 28(3):253-60. PubMed ID: 16479581
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of sydnone SYD-1, a mesoionic compound, on energy-linked functions of rat liver mitochondria.
    Halila GC; de Oliveira MB; Echevarria A; Belém AC; Rocha ME; Carnieri EG; Martinez GR; Noleto GR; Cadena SM
    Chem Biol Interact; 2007 Sep; 169(3):160-70. PubMed ID: 17644080
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydroperoxyl, superoxide and pH gradients in the mitochondrial matrix: a theoretical assessment.
    Salvador A; Sousa J; Pinto RE
    Free Radic Biol Med; 2001 Nov; 31(10):1208-15. PubMed ID: 11705699
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Further characterization of mitochondrial outer membrane: evidence for the presence of two endogenous sialylated glycoproteins.
    Gasnier F; Ardail D; Lermé F; Simonot C; Vaganay E; Louisot P; Gateau-Roesch O
    J Biochem; 1994 Sep; 116(3):643-8. PubMed ID: 7852285
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Possibilities for errors in the measurement of mitochondrial electrochemical proton gradients].
    Kunz W; Schild L; Schönfeld P
    Z Med Lab Diagn; 1987; 28(7):353-60. PubMed ID: 2829453
    [No Abstract]   [Full Text] [Related]  

  • 39. The leaks and slips of bioenergetic membranes.
    Brown GC
    FASEB J; 1992 Aug; 6(11):2961-5. PubMed ID: 1644259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Membrane biophysics. Surface conduction of protons.
    Selwyn MJ
    Nature; 1986 Aug 21-27; 322(6081):685-6. PubMed ID: 3018582
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.