These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 12816252)

  • 1. Wet-etch optimization of free-standing terahertz frequency-selective structures.
    Baumann F; Bailey WA; Naweed A; Goodhue WD; Gatesman AJ
    Opt Lett; 2003 Jun; 28(11):938-40. PubMed ID: 12816252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct fabrication of terahertz optical devices on low-absorption polymer substrates.
    Ma Y; Khalid A; Drysdale TD; Cumming DR
    Opt Lett; 2009 May; 34(10):1555-7. PubMed ID: 19448819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Terahertz bandpass filters using double-stacked metamaterial layers.
    Zhu Y; Vegesna S; Kuryatkov V; Holtz M; Saed M; Bernussi AA
    Opt Lett; 2012 Feb; 37(3):296-8. PubMed ID: 22297331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terahertz wire-grid polarizers with micrometer-pitch Al gratings.
    Yamada I; Takano K; Hangyo M; Saito M; Watanabe W
    Opt Lett; 2009 Feb; 34(3):274-6. PubMed ID: 19183629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable terahertz transmission properties of aligned Ni-nanowire arrays.
    Xiang W; Liu Y; Hu M; Guo H
    Opt Express; 2017 Nov; 25(24):30606-30610. PubMed ID: 29221088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Huge field enhancement and high transmittance enabled by terahertz bow-tie aperture arrays: a simulation study.
    Zhu X; Zhang S; Shi H; Zheng M; Wang Y; Xue S; Quan J; Zhang J; Duan H
    Opt Express; 2020 Feb; 28(4):5851-5859. PubMed ID: 32121799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-loss flexible bilayer metamaterials in THz regime.
    Woo JM; Kim D; Hussain S; Jang JH
    Opt Express; 2014 Feb; 22(3):2289-98. PubMed ID: 24663521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust terahertz polarizers with high transmittance at selected frequencies through Si wafer bonding technologies.
    Yu TY; Chi NC; Tsai HC; Wang SY; Luo CW; Chen KN
    Opt Lett; 2017 Dec; 42(23):4917-4920. PubMed ID: 29216144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly selective terahertz bandpass filters based on trapped mode excitation.
    Paul O; Beigang R; Rahm M
    Opt Express; 2009 Oct; 17(21):18590-5. PubMed ID: 20372589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmission features of frequency-selective components in the far infrared determined by terahertz time-domain spectroscopy.
    Winnewisser C; Lewen F; Weinzierl J; Helm H
    Appl Opt; 1999 Jun; 38(18):3961-7. PubMed ID: 18320005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free-standing double-layer terahertz band-pass filters fabricated by femtosecond laser micro-machining.
    Lin Y; Yao H; Ju X; Chen Y; Zhong S; Wang X
    Opt Express; 2017 Oct; 25(21):25125-25134. PubMed ID: 29041184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MV/cm terahertz pulses from relativistic laser-plasma interaction characterized by nonlinear terahertz absorption bleaching in n-doped InGaAs.
    Mondal S; Hafez HA; Ropagnol X; Ozaki T
    Opt Express; 2017 Jul; 25(15):17511-17523. PubMed ID: 28789242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-power dual-wavelength external-cavity diode laser based on tapered amplifier with tunable terahertz frequency difference.
    Chi M; Jensen OB; Petersen PM
    Opt Lett; 2011 Jul; 36(14):2626-8. PubMed ID: 21765489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonant metal-mesh bandpass filters for the far infrared.
    Porterfield DW; Hesler JL; Densing R; Mueller ER; Crowe TW; Weikle Ii RM
    Appl Opt; 1994 Sep; 33(25):6046-52. PubMed ID: 20936018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-shaped bandpass filters for the near- and mid-infrared wavelength regions.
    Möller KD; Warren JB; Heaney JB; Kotecki C
    Appl Opt; 1996 Nov; 35(31):6210-5. PubMed ID: 21127642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Widely tunable dual-wavelength Er3+-doped fiber laser for tunable continuous-wave terahertz radiation.
    Jeon MY; Kim N; Shin J; Jeong JS; Han SP; Lee CW; Leem YA; Yee DS; Chun HS; Park KH
    Opt Express; 2010 Jun; 18(12):12291-7. PubMed ID: 20588354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generating periodic terahertz structures in a relativistic electron beam through frequency down-conversion of optical lasers.
    Dunning M; Hast C; Hemsing E; Jobe K; McCormick D; Nelson J; Raubenheimer TO; Soong K; Szalata Z; Walz D; Weathersby S; Xiang D
    Phys Rev Lett; 2012 Aug; 109(7):074801. PubMed ID: 23006375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low divergence single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers.
    Liang G; Liang H; Zhang Y; Li L; Davies AG; Linfield E; Yu SF; Liu HC; Wang QJ
    Opt Express; 2013 Dec; 21(26):31872-82. PubMed ID: 24514783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable, high peak power terahertz radiation from optical rectification of a short modulated laser pulse.
    Gordon DF; Ting A; Alexeev I; Fischer R; Sprangle P; Kapetenakos CA; Zigler A
    Opt Express; 2006 Jul; 14(15):6813-22. PubMed ID: 19516863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terahertz cross-correlation spectroscopy driven by incoherent light from a superluminescent diode.
    Molter D; Kolano M; von Freymann G
    Opt Express; 2019 Apr; 27(9):12659-12665. PubMed ID: 31052804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.