BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 12816498)

  • 1. Novel chemoenzymatic strategy for the synthesis of enantiomerically pure secondary alcohols with sterically similar substituents.
    Abad JL; Soldevila C; Camps F; Clapés P
    J Org Chem; 2003 Jun; 68(13):5351-6. PubMed ID: 12816498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemoenzymatic synthesis of rivastigmine based on lipase-catalyzed processes.
    Mangas-Sánchez J; Rodríguez-Mata M; Busto E; Gotor-Fernández V; Gotor V
    J Org Chem; 2009 Aug; 74(15):5304-10. PubMed ID: 19555095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic resolution of beta- and gamma-hydroxy sulfides by fungal lipase from Humicola lanuginosa.
    Singh S; Kumar S; Chimni SS
    Enantiomer; 2002; 7(4-5):231-40. PubMed ID: 12206504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.
    Andrade LH; Barcellos T
    Org Lett; 2009 Jul; 11(14):3052-5. PubMed ID: 19552446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly selective palladium catalyzed kinetic resolution and enantioselective substitution of racemic allylic carbonates with sulfur nucleophiles: asymmetric synthesis of allylic sulfides, allylic sulfones, and allylic alcohols.
    Gais HJ; Jagusch T; Spalthoff N; Gerhards F; Frank M; Raabe G
    Chemistry; 2003 Sep; 9(17):4202-21. PubMed ID: 12953206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Lipase-catalyzed kinetic resolution of 2-substituted cycloalkanols].
    Forró E
    Acta Pharm Hung; 2001; 71(1):119-26. PubMed ID: 11769092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of absolute configuration of secondary alcohols using lipase-catalyzed kinetic resolutions.
    Jing Q; Kazlauskas RJ
    Chirality; 2008 May; 20(5):724-35. PubMed ID: 18278808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly diastereo- and enantioselective synthesis of monodifferentiated syn-1,2-diol derivatives through asymmetric transfer hydrogenation via dynamic kinetic resolution.
    Cartigny D; Püntener K; Ayad T; Scalone M; Ratovelomanana-Vidal V
    Org Lett; 2010 Sep; 12(17):3788-91. PubMed ID: 20672834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The design of novel N-4'-pyridinyl-alpha-methyl proline derivatives as potent catalysts for the kinetic resolution of alcohols.
    Priem G; Pelotier B; Macdonald SJ; Anson MS; Campbell IB
    J Org Chem; 2003 May; 68(10):3844-8. PubMed ID: 12737562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolution of secondary alcohols via Carica papaya lipase-catalyzed enantioselective acylation.
    Miyazawa T; Houhashi M; Inoue Y; Murashima T; Yamada T
    Biotechnol Lett; 2008 Oct; 30(10):1783-7. PubMed ID: 18512020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anhydrides as acylating agents in the enzymatic resolution of an intermediate of (-)-Paroxetine.
    de Gonzalo G; Brieva R; Sánchez VM; Bayod M; Gotor V
    J Org Chem; 2003 Apr; 68(8):3333-6. PubMed ID: 12688815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmentally friendly, efficient resolution of racemic secondary alcohols by lipase-catalyzed enantioselective transesterification in ionic liquids in the presence of organic bases.
    Wu XM; Xin JY; Sun W; Xia CG
    Chem Biodivers; 2007 Feb; 4(2):183-8. PubMed ID: 17311231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric chemoenzymatic synthesis of ramatroban using lipases and oxidoreductases.
    Busto E; Gotor-Fernández V; Gotor V
    J Org Chem; 2012 May; 77(10):4842-8. PubMed ID: 22515546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resolution of racemic 2-aminocyclohexanol derivatives and their application as ligands in asymmetric catalysis.
    Schiffers I; Rantanen T; Schmidt F; Bergmans W; Zani L; Bolm C
    J Org Chem; 2006 Mar; 71(6):2320-31. PubMed ID: 16526780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective asymmetric synthesis of 1,2,9,9a-tetrahydrocyclopropa[c]benzo[e]indol-4-one (CBI).
    Kastrinsky DB; Boger DL
    J Org Chem; 2004 Apr; 69(7):2284-9. PubMed ID: 15049620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-efficiency and minimum-waste continuous kinetic resolution of racemic alcohols by using lipase in supercritical carbon dioxide.
    Matsuda T; Watanabe K; Harada T; Nakamura K; Arita Y; Misumi Y; Ichikawa S; Ikariya T
    Chem Commun (Camb); 2004 Oct; (20):2286-7. PubMed ID: 15489983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemoenzymatic synthesis with lipase catalyzed resolution and evaluation of antitumor activity of (R/S)-2-[2-hydroxy-3-(4-phenylpiperazin-1-yl)propyl]-1H-pyrrolo[3,4-b]quinolin-3(2H)-one.
    Nagarapu L; Gaikwad HK; Bantu R; Manikonda SR
    Eur J Med Chem; 2011 Jun; 46(6):2152-6. PubMed ID: 21440337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic resolution of profens by enantioselective esterification catalyzed by Candida antarctica and Candida rugosa lipases.
    Sikora A; Siódmiak T; Marszałł MP
    Chirality; 2014 Oct; 26(10):663-9. PubMed ID: 25080075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantiopure derivatives of 1,2-alkanediols: substrate requirements of lipase B from Candida antarctica.
    Jacobsen EE; Hoff BH; Anthonsen T
    Chirality; 2000 Oct; 12(9):654-9. PubMed ID: 10984738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. (S)-selective kinetic resolution and chemoenzymatic dynamic kinetic resolution of secondary alcohols.
    Borén L; Martín-Matute B; Xu Y; Córdova A; Bäckvall JE
    Chemistry; 2005 Dec; 12(1):225-32. PubMed ID: 16267860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.