These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 12816605)
1. Self-organizing neural systems based on predictive learning. Rao RP; Sejnowski TJ Philos Trans A Math Phys Eng Sci; 2003 Jun; 361(1807):1149-75. PubMed ID: 12816605 [TBL] [Abstract][Full Text] [Related]
2. An implementation of reinforcement learning based on spike timing dependent plasticity. Roberts PD; Santiago RA; Lafferriere G Biol Cybern; 2008 Dec; 99(6):517-23. PubMed ID: 18941775 [TBL] [Abstract][Full Text] [Related]
3. A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback. Legenstein R; Pecevski D; Maass W PLoS Comput Biol; 2008 Oct; 4(10):e1000180. PubMed ID: 18846203 [TBL] [Abstract][Full Text] [Related]
6. Adaptive synchronization of activities in a recurrent network. Voegtlin T Neural Comput; 2009 Jun; 21(6):1749-75. PubMed ID: 19191597 [TBL] [Abstract][Full Text] [Related]
7. A computational framework for cortical learning. Suri RE Biol Cybern; 2004 Jun; 90(6):400-9. PubMed ID: 15316786 [TBL] [Abstract][Full Text] [Related]
8. Cellular and network mechanisms of operant learning-induced compulsive behavior in Aplysia. Nargeot R; Le Bon-Jego M; Simmers J Curr Biol; 2009 Jun; 19(12):975-84. PubMed ID: 19500988 [TBL] [Abstract][Full Text] [Related]
9. Predictive learning of temporal sequences in recurrent neocortical circuits. Rao RP; Sejnowski TJ Novartis Found Symp; 2001; 239():208-29; discussion 229-40. PubMed ID: 11529313 [TBL] [Abstract][Full Text] [Related]
10. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking. Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559 [TBL] [Abstract][Full Text] [Related]
11. Multiplicative gain modulation arises through unsupervised learning in a predictive coding model of cortical function. De Meyer K; Spratling MW Neural Comput; 2011 Jun; 23(6):1536-67. PubMed ID: 21395434 [TBL] [Abstract][Full Text] [Related]
12. Solving the distal reward problem with rare correlations. Soltoggio A; Steil JJ Neural Comput; 2013 Apr; 25(4):940-78. PubMed ID: 23339615 [TBL] [Abstract][Full Text] [Related]
13. Reinforcement learning, spike-time-dependent plasticity, and the BCM rule. Baras D; Meir R Neural Comput; 2007 Aug; 19(8):2245-79. PubMed ID: 17571943 [TBL] [Abstract][Full Text] [Related]
14. How feedback inhibition shapes spike-timing-dependent plasticity and its implications for recent Schizophrenia models. Porr B; McCabe L; di Prodi P; Kolodziejski C; Wörgötter F Neural Netw; 2011 Aug; 24(6):560-7. PubMed ID: 21477988 [TBL] [Abstract][Full Text] [Related]
15. Spike timing dependent synaptic plasticity in biological systems. Roberts PD; Bell CC Biol Cybern; 2002 Dec; 87(5-6):392-403. PubMed ID: 12461629 [TBL] [Abstract][Full Text] [Related]
16. The tempotron: a neuron that learns spike timing-based decisions. Gütig R; Sompolinsky H Nat Neurosci; 2006 Mar; 9(3):420-8. PubMed ID: 16474393 [TBL] [Abstract][Full Text] [Related]
17. Bee foraging in uncertain environments using predictive hebbian learning. Montague PR; Dayan P; Person C; Sejnowski TJ Nature; 1995 Oct; 377(6551):725-8. PubMed ID: 7477260 [TBL] [Abstract][Full Text] [Related]