BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 12817080)

  • 1. On the mechanism of chaperone activity of the small heat-shock protein of Methanococcus jannaschii.
    Kim R; Lai L; Lee HH; Cheong GW; Kim KK; Wu Z; Yokota H; Marqusee S; Kim SH
    Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8151-5. PubMed ID: 12817080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation mechanism of HSP16.5 from Methanococcus jannaschii.
    Kim DR; Lee I; Ha SC; Kim KK
    Biochem Biophys Res Commun; 2003 Aug; 307(4):991-8. PubMed ID: 12878210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small heat shock protein of Methanococcus jannaschii, a hyperthermophile.
    Kim R; Kim KK; Yokota H; Kim SH
    Proc Natl Acad Sci U S A; 1998 Aug; 95(16):9129-33. PubMed ID: 9689045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preheating induced homogeneity of the small heat shock protein from Methanococcus jannaschii.
    Cao A; Wang Z; Wei P; Xu F; Cao J; Lai L
    Biochim Biophys Acta; 2008 Mar; 1784(3):489-95. PubMed ID: 18211832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The minimal α-crystallin domain of Mj Hsp16.5 is functional at non-heat-shock conditions.
    Xi D; Wei P; Zhang C; Lai L
    Proteins; 2014 Jul; 82(7):1156-67. PubMed ID: 24243469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subunit exchange, conformational stability, and chaperone-like function of the small heat shock protein 16.5 from Methanococcus jannaschii.
    Bova MP; Huang Q; Ding L; Horwitz J
    J Biol Chem; 2002 Oct; 277(41):38468-75. PubMed ID: 12176992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional models corresponding to the C-terminal domain of human alphaA- and alphaB-crystallins based on the crystal structure of the small heat-shock protein HSP16.9 from wheat.
    Guruprasad K; Kumari K
    Int J Biol Macromol; 2003 Nov; 33(1-3):107-12. PubMed ID: 14599592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The determinants of the oligomeric structure in Hsp16.5 are encoded in the alpha-crystallin domain.
    Koteiche HA; Mchaourab HS
    FEBS Lett; 2002 May; 519(1-3):16-22. PubMed ID: 12023011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions.
    Basha E; Lee GJ; Breci LA; Hausrath AC; Buan NR; Giese KC; Vierling E
    J Biol Chem; 2004 Feb; 279(9):7566-75. PubMed ID: 14662763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-directed mutations within the core "alpha-crystallin" domain of the small heat-shock protein, human alphaB-crystallin, decrease molecular chaperone functions.
    Muchowski PJ; Wu GJ; Liang JJ; Adman ET; Clark JI
    J Mol Biol; 1999 Jun; 289(2):397-411. PubMed ID: 10366513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of a small heat-shock protein.
    Kim KK; Kim R; Kim SH
    Nature; 1998 Aug; 394(6693):595-9. PubMed ID: 9707123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dual role for the N-terminal region of Mycobacterium tuberculosis Hsp16.3 in self-oligomerization and binding denaturing substrate proteins.
    Fu X; Zhang H; Zhang X; Cao Y; Jiao W; Liu C; Song Y; Abulimiti A; Chang Z
    J Biol Chem; 2005 Feb; 280(8):6337-48. PubMed ID: 15545279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryoelectron microscopy and EPR analysis of engineered symmetric and polydisperse Hsp16.5 assemblies reveals determinants of polydispersity and substrate binding.
    Shi J; Koteiche HA; McHaourab HS; Stewart PL
    J Biol Chem; 2006 Dec; 281(52):40420-8. PubMed ID: 17079234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small heat-shock protein structures reveal a continuum from symmetric to variable assemblies.
    Haley DA; Bova MP; Huang QL; Mchaourab HS; Stewart PL
    J Mol Biol; 2000 Apr; 298(2):261-72. PubMed ID: 10764595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional identification of the SecB homologue in Methanococcus jannaschii and direct interaction of SecB with trigger factor.
    Ha SC; Lee TH; Cha SS; Kim KK
    Biochem Biophys Res Commun; 2004 Mar; 315(4):1039-44. PubMed ID: 14985117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure and assembly of a eukaryotic small heat shock protein.
    van Montfort RL; Basha E; Friedrich KL; Slingsby C; Vierling E
    Nat Struct Biol; 2001 Dec; 8(12):1025-30. PubMed ID: 11702068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between small heat shock protein subunits and substrate in small heat shock protein-substrate complexes.
    Friedrich KL; Giese KC; Buan NR; Vierling E
    J Biol Chem; 2004 Jan; 279(2):1080-9. PubMed ID: 14573605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional profiling of the hyperthermophilic methanarchaeon Methanococcus jannaschii in response to lethal heat and non-lethal cold shock.
    Boonyaratanakornkit BB; Simpson AJ; Whitehead TA; Fraser CM; El-Sayed NM; Clark DS
    Environ Microbiol; 2005 Jun; 7(6):789-97. PubMed ID: 15892698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryoelectron microscopy analysis of small heat shock protein 16.5 (Hsp16.5) complexes with T4 lysozyme reveals the structural basis of multimode binding.
    Shi J; Koteiche HA; McDonald ET; Fox TL; Stewart PL; McHaourab HS
    J Biol Chem; 2013 Feb; 288(7):4819-30. PubMed ID: 23277356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural dynamics of archaeal small heat shock proteins.
    Haslbeck M; Kastenmüller A; Buchner J; Weinkauf S; Braun N
    J Mol Biol; 2008 Apr; 378(2):362-74. PubMed ID: 18353362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.