These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 12817752)
1. Infrared analysis of the mineral and matrix in bones of osteonectin-null mice and their wildtype controls. Boskey AL; Moore DJ; Amling M; Canalis E; Delany AM J Bone Miner Res; 2003 Jun; 18(6):1005-11. PubMed ID: 12817752 [TBL] [Abstract][Full Text] [Related]
2. Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Boskey AL; Spevak L; Paschalis E; Doty SB; McKee MD Calcif Tissue Int; 2002 Aug; 71(2):145-54. PubMed ID: 12073157 [TBL] [Abstract][Full Text] [Related]
3. DMP1 depletion decreases bone mineralization in vivo: an FTIR imaging analysis. Ling Y; Rios HF; Myers ER; Lu Y; Feng JQ; Boskey AL J Bone Miner Res; 2005 Dec; 20(12):2169-77. PubMed ID: 16294270 [TBL] [Abstract][Full Text] [Related]
4. Effects of transforming growth factor-beta deficiency on bone development: a Fourier transform-infrared imaging analysis. Atti E; Gomez S; Wahl SM; Mendelsohn R; Paschalis E; Boskey AL Bone; 2002 Dec; 31(6):675-84. PubMed ID: 12531561 [TBL] [Abstract][Full Text] [Related]
6. DSPP effects on in vivo bone mineralization. Verdelis K; Ling Y; Sreenath T; Haruyama N; MacDougall M; van der Meulen MC; Lukashova L; Spevak L; Kulkarni AB; Boskey AL Bone; 2008 Dec; 43(6):983-90. PubMed ID: 18789408 [TBL] [Abstract][Full Text] [Related]
7. Alteration of the bone tissue material properties in type 1 diabetes mellitus: A Fourier transform infrared microspectroscopy study. Mieczkowska A; Mansur SA; Irwin N; Flatt PR; Chappard D; Mabilleau G Bone; 2015 Jul; 76():31-9. PubMed ID: 25813583 [TBL] [Abstract][Full Text] [Related]
8. Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Boskey AL; Gadaleta S; Gundberg C; Doty SB; Ducy P; Karsenty G Bone; 1998 Sep; 23(3):187-96. PubMed ID: 9737340 [TBL] [Abstract][Full Text] [Related]
9. Overexpression of IGF-binding protein 5 alters mineral and matrix properties in mouse femora: an infrared imaging study. Atti E; Boskey AL; Canalis E Calcif Tissue Int; 2005 Mar; 76(3):187-93. PubMed ID: 15570402 [TBL] [Abstract][Full Text] [Related]
10. Evidence of altered matrix composition in iliac crest biopsies from patients with idiopathic juvenile osteoporosis. Garcia I; Chiodo V; Ma Y; Boskey A Connect Tissue Res; 2016; 57(1):28-37. PubMed ID: 26539896 [TBL] [Abstract][Full Text] [Related]
11. Osteopontin facilitates bone resorption, decreasing bone mineral crystallinity and content during calcium deficiency. Shapses SA; Cifuentes M; Spevak L; Chowdhury H; Brittingham J; Boskey AL; Denhardt DT Calcif Tissue Int; 2003 Jul; 73(1):86-92. PubMed ID: 14506959 [TBL] [Abstract][Full Text] [Related]
12. Anabolic action of parathyroid hormone (PTH) does not compromise bone matrix mineral composition or maturation. Vrahnas C; Pearson TA; Brunt AR; Forwood MR; Bambery KR; Tobin MJ; Martin TJ; Sims NA Bone; 2016 Dec; 93():146-154. PubMed ID: 27686599 [TBL] [Abstract][Full Text] [Related]
13. Fourier transform infrared imaging microspectroscopy and tissue-level mechanical testing reveal intraspecies variation in mouse bone mineral and matrix composition. Courtland HW; Nasser P; Goldstone AB; Spevak L; Boskey AL; Jepsen KJ Calcif Tissue Int; 2008 Nov; 83(5):342-53. PubMed ID: 18855037 [TBL] [Abstract][Full Text] [Related]
14. Fourier transform infrared microspectroscopic analysis identifies alterations in mineral properties in bones from mice transgenic for type X collagen. Paschalis EP; Jacenko O; Olsen B; Mendelsohn R; Boskey AL Bone; 1996 Aug; 19(2):151-6. PubMed ID: 8853859 [TBL] [Abstract][Full Text] [Related]
15. Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Boskey AL; DiCarlo E; Paschalis E; West P; Mendelsohn R Osteoporos Int; 2005 Dec; 16(12):2031-8. PubMed ID: 16088360 [TBL] [Abstract][Full Text] [Related]
16. Osteopenia and decreased bone formation in osteonectin-deficient mice. Delany AM; Amling M; Priemel M; Howe C; Baron R; Canalis E J Clin Invest; 2000 Apr; 105(7):915-23. PubMed ID: 10749571 [TBL] [Abstract][Full Text] [Related]
17. Bone remodeling and bone matrix quality before and after menopause in healthy women. Farlay D; Bala Y; Rizzo S; Bare S; Lappe JM; Recker R; Boivin G Bone; 2019 Nov; 128():115030. PubMed ID: 31404670 [TBL] [Abstract][Full Text] [Related]
18. Targeted overexpression of vitamin D receptor in osteoblasts increases calcium concentration without affecting structural properties of bone mineral crystals. Misof BM; Roschger P; Tesch W; Baldock PA; Valenta A; Messmer P; Eisman JA; Boskey AL; Gardiner EM; Fratzl P; Klaushofer K Calcif Tissue Int; 2003 Sep; 73(3):251-7. PubMed ID: 14667138 [TBL] [Abstract][Full Text] [Related]
19. Bone Matrix Composition Following PTH Treatment is Not Dependent on Sclerostin Status. Ross RD; Mashiatulla M; Robling AG; Miller LM; Sumner DR Calcif Tissue Int; 2016 Feb; 98(2):149-57. PubMed ID: 26514840 [TBL] [Abstract][Full Text] [Related]
20. Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone. Turunen MJ; Saarakkala S; Rieppo L; Helminen HJ; Jurvelin JS; Isaksson H Appl Spectrosc; 2011 Jun; 65(6):595-603. PubMed ID: 21639980 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]