These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 12817981)
1. Adduct formation of methyltrioxorhenium with mono- and bidentate nitrogen donors: formation constants. Nabavizadeh SM Inorg Chem; 2003 Jun; 42(13):4204-8. PubMed ID: 12817981 [TBL] [Abstract][Full Text] [Related]
2. Thermodynamic studies of the binding of bidentate nitrogen donors with methyltrioxorhenium (MTO) in CHCl3 solution. Nabavizadeh SM Dalton Trans; 2005 May; (9):1644-8. PubMed ID: 15852113 [TBL] [Abstract][Full Text] [Related]
3. Solvent effect on the adduct formation of methyltrioxorhenium (MTO) and pyridine: enthalpy and entropy contributions. Nabavizadeh SM; Akbari A; Rashidi M Dalton Trans; 2005 Jul; (14):2423-7. PubMed ID: 15995752 [TBL] [Abstract][Full Text] [Related]
4. Lewis acidity of methyltrioxorhenium(VII) (MTO) based on the relative binding strengths of N-donors. Nabavizadeh SM; Rashidi M J Am Chem Soc; 2006 Jan; 128(1):351-7. PubMed ID: 16390165 [TBL] [Abstract][Full Text] [Related]
5. Mono- and bis- methyltrioxorhenium(VII) complexes with salen ligands: synthesis, properties, applications. Xu Z; Zhou MD; Drees M; Chaffey-Millar H; Herdtweck E; Herrmann WA; Kühn FE Inorg Chem; 2009 Jul; 48(14):6812-22. PubMed ID: 19548686 [TBL] [Abstract][Full Text] [Related]
6. The coordination of imidazole and substituted pyridines by the hemeoctapeptide N-acetyl-ferromicroperoxidase-8 (FeIINAcMP8). Vashi PR; Marques HM J Inorg Biochem; 2004 Sep; 98(9):1471-82. PubMed ID: 15337599 [TBL] [Abstract][Full Text] [Related]
8. Synthetic routes to mixed-ligand cobalt(III) dithiocarbamato complexes containing imidazole, amine and pyridine donors and the X-ray crystal structure of a cobalt(III) bis(dithiocarbamato) histamine complex. Hodgson MC; Brothers PJ; Clark GR; Ware DC J Inorg Biochem; 2008 Apr; 102(4):789-97. PubMed ID: 18262652 [TBL] [Abstract][Full Text] [Related]
9. Synthesis, structure, spectra and reactivity of iron(III) complexes of facially coordinating and sterically hindering 3N ligands as models for catechol dioxygenases. Sundaravel K; Dhanalakshmi T; Suresh E; Palaniandavar M Dalton Trans; 2008 Dec; (48):7012-25. PubMed ID: 19050788 [TBL] [Abstract][Full Text] [Related]
10. Probing the nature of the Co(III) ion in cobalamins: a comparison of the reaction of aquacobalamin (vitamin B12a) and aqua-10-chlorocobalamin with some anionic and N-donor ligands. Knapton L; Marques HM Dalton Trans; 2005 Mar; (5):889-95. PubMed ID: 15726141 [TBL] [Abstract][Full Text] [Related]
11. Uranyl complexes with diamide ligands: a quantum mechanics study of chelating properties in the gas phase. Coupez B; Wipff G Inorg Chem; 2003 Jun; 42(11):3693-703. PubMed ID: 12767210 [TBL] [Abstract][Full Text] [Related]
12. Novel iron(III) complexes of sterically hindered 4N ligands: regioselectivity in biomimetic extradiol cleavage of catechols. Mayilmurugan R; Stoeckli-Evans H; Palaniandavar M Inorg Chem; 2008 Aug; 47(15):6645-58. PubMed ID: 18597419 [TBL] [Abstract][Full Text] [Related]
13. Chemistry of HIV-1 virucidal Pt complexes having neglected bidentate sp2 N-donor carrier ligands with linked triazine and pyridine rings. synthesis, NMR spectral features, structure, and reaction with guanosine. Maheshwari V; Bhattacharyya D; Fronczek FR; Marzilli PA; Marzilli LG Inorg Chem; 2006 Sep; 45(18):7182-90. PubMed ID: 16933918 [TBL] [Abstract][Full Text] [Related]
14. Reactivity of a (mu-oxo)(mu-hydroxo)diiron(III) diamond core with water, urea, substituted ureas, and acetamide. Taktak S; Kryatov SV; Rybak-Akimova EV Inorg Chem; 2004 Nov; 43(22):7196-209. PubMed ID: 15500359 [TBL] [Abstract][Full Text] [Related]
15. Equilibrium and NMR studies on GdIII, YIII, CuII and ZnII complexes of various DTPA-N,N''-bis(amide) ligands. Kinetic stabilities of the gadolinium(III) complexes. Jászberényi Z; Bányai I; Brücher E; Király R; Hideg K; Kálai T Dalton Trans; 2006 Feb; (8):1082-91. PubMed ID: 16474894 [TBL] [Abstract][Full Text] [Related]
16. Equilibrium and ab initio computational studies on the adduct formation of 1,3-diketonato-lithium(I), -sodium(I) and -potassium(I) with 1,10-phenanthroline and its 2,9-dimethyl derivatives. Ishimori K; Mori S; Ito Y; Ohashi K; Imura H Talanta; 2009 Jun; 78(4-5):1272-9. PubMed ID: 19362187 [TBL] [Abstract][Full Text] [Related]
17. A new tripodal iron(III) monophenolate complex: effects of ligand basicity, steric hindrance, and solvent on regioselective extradiol cleavage. Mayilmurugan R; Suresh E; Palaniandavar M Inorg Chem; 2007 Jul; 46(15):6038-49. PubMed ID: 17589990 [TBL] [Abstract][Full Text] [Related]
18. Iron(III) complexes of tridentate 3N ligands as functional models for catechol dioxygenases: the role of ligand N-alkyl substitution and solvent on reaction rate and product selectivity. Visvaganesan K; Mayilmurugan R; Suresh E; Palaniandavar M Inorg Chem; 2007 Nov; 46(24):10294-306. PubMed ID: 17958355 [TBL] [Abstract][Full Text] [Related]
19. Intramolecular metal...sulfur interactions of platinum(II) 1,4,7-trithiacyclononane complexes with bipyridyl ligands: the relationship between molecular and electronic structures. Green TW; Lieberman R; Mitchell N; Krause Bauer JA; Connick WB Inorg Chem; 2005 Mar; 44(6):1955-65. PubMed ID: 15762722 [TBL] [Abstract][Full Text] [Related]
20. Homo-and heterodinuclear complexes of the tris(catecholamide) derivative of a tetraazamacrocycle with Fe3+, Cu2+ and Zn2+ metal ions. Guerra KP; Delgado R Dalton Trans; 2008 Jan; (4):539-50. PubMed ID: 18185872 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]