BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 12818576)

  • 21. Angiotensin II and the JNK pathway mediate urotensin II expression in response to hypoxia in rat cardiomyocytes.
    Chiu CZ; Wang BW; Shyu KG
    J Endocrinol; 2014 Mar; 220(3):233-46. PubMed ID: 24481965
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Salvianolic acid B protects cardiomyocytes from angiotensin II-induced hypertrophy via inhibition of PARP-1.
    Liu M; Ye J; Gao S; Fang W; Li H; Geng B; Zou J; Chen X; Chen S; Zhang L; Yue Z; Ma Y; Gao H; Li Z; Liu P
    Biochem Biophys Res Commun; 2014 Feb; 444(3):346-53. PubMed ID: 24462865
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reactive oxygen species mediate amplitude-dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes.
    Pimentel DR; Amin JK; Xiao L; Miller T; Viereck J; Oliver-Krasinski J; Baliga R; Wang J; Siwik DA; Singh K; Pagano P; Colucci WS; Sawyer DB
    Circ Res; 2001 Aug; 89(5):453-60. PubMed ID: 11532907
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isorhapontigenin, a new resveratrol analog, attenuates cardiac hypertrophy via blocking signaling transduction pathways.
    Li HL; Wang AB; Huang Y; Liu DP; Wei C; Williams GM; Zhang CN; Liu G; Liu YQ; Hao DL; Hui RT; Lin M; Liang CC
    Free Radic Biol Med; 2005 Jan; 38(2):243-57. PubMed ID: 15607907
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy.
    Zafari AM; Ushio-Fukai M; Akers M; Yin Q; Shah A; Harrison DG; Taylor WR; Griendling KK
    Hypertension; 1998 Sep; 32(3):488-95. PubMed ID: 9740615
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Angiotensin1-9 antagonises pro-hypertrophic signalling in cardiomyocytes via the angiotensin type 2 receptor.
    Flores-Muñoz M; Smith NJ; Haggerty C; Milligan G; Nicklin SA
    J Physiol; 2011 Feb; 589(Pt 4):939-51. PubMed ID: 21173078
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Let-7a Is an Antihypertrophic Regulator in the Heart via Targeting Calmodulin.
    Zhou X; Sun F; Luo S; Zhao W; Yang T; Zhang G; Gao M; Lu R; Shu Y; Mu W; Zhuang Y; Ding F; Xu C; Lu Y
    Int J Biol Sci; 2017; 13(1):22-31. PubMed ID: 28123343
    [No Abstract]   [Full Text] [Related]  

  • 28. Impact of HMG CoA reductase inhibition on small GTPases in the heart.
    Laufs U; Kilter H; Konkol C; Wassmann S; Böhm M; Nickenig G
    Cardiovasc Res; 2002 Mar; 53(4):911-20. PubMed ID: 11922901
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice.
    Bendall JK; Cave AC; Heymes C; Gall N; Shah AM
    Circulation; 2002 Jan; 105(3):293-6. PubMed ID: 11804982
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Down-regulation of miR-200c attenuates AngII-induced cardiac hypertrophy via targeting the MLCK-mediated pathway.
    Hu S; Cheng M; Guo X; Wang S; Liu B; Jiang H; Huang C; Wu G
    J Cell Mol Med; 2019 Apr; 23(4):2505-2516. PubMed ID: 30680929
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Angiotensin II (AT1) receptors and NADPH oxidase regulate Cl- current elicited by beta1 integrin stretch in rabbit ventricular myocytes.
    Browe DM; Baumgarten CM
    J Gen Physiol; 2004 Sep; 124(3):273-87. PubMed ID: 15337822
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ras and rho are required for galphaq-induced hypertrophic gene expression in neonatal rat cardiac myocytes.
    Hines WA; Thorburn A
    J Mol Cell Cardiol; 1998 Mar; 30(3):485-94. PubMed ID: 9515026
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simvastatin inhibits angiotensin II-induced cardiac cell hypertrophy: role of Homer 1a.
    Guo WG; Su FF; Yuan LJ; Yang GD; Shi XQ; Li RY; Shu Q; Liu XT; Lu ZF; Zheng QS
    Clin Exp Pharmacol Physiol; 2010 Jan; 37(1):40-5. PubMed ID: 19515066
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vascular but not cardiac remodeling is associated with superoxide production in angiotensin II hypertension.
    Zhou MS; Jaimes EA; Raij L
    J Hypertens; 2005 Sep; 23(9):1737-43. PubMed ID: 16093920
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Angiotensin II-induced cardiac hypertrophy is associated with different mitogen-activated protein kinase activation in normotensive and hypertensive mice.
    Pellieux C; Sauthier T; Aubert JF; Brunner HR; Pedrazzini T
    J Hypertens; 2000 Sep; 18(9):1307-17. PubMed ID: 10994762
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibitory effect of trilinolein on angiotensin II-induced cardiomyocyte hypertrophy.
    Liu JC; Cheng TH; Lee HM; Lee WS; Shih NL; Chen YL; Chen JJ; Chan P
    Eur J Pharmacol; 2004 Jan; 484(1):1-8. PubMed ID: 14729376
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gender influences cerebral vascular responses to angiotensin II through Nox2-derived reactive oxygen species.
    De Silva TM; Broughton BR; Drummond GR; Sobey CG; Miller AA
    Stroke; 2009 Apr; 40(4):1091-7. PubMed ID: 19211495
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of microRNA-124 in cardiomyocyte hypertrophy inducedby angiotensin II.
    Bao Q; Chen L; Li J; Zhao M; Wu S; Wu W; Liu X
    Cell Mol Biol (Noisy-le-grand); 2017 Apr; 63(4):23-27. PubMed ID: 28478799
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of PLD-PKCζ signaling axis in p47phox phosphorylation for activation of NADPH oxidase by angiotensin II in pulmonary artery smooth muscle cells.
    Chakraborti S; Sarkar J; Chakraborti T
    Cell Biol Int; 2019 Jun; 43(6):678-694. PubMed ID: 30977575
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Oxidative stress and calcium/calmodulin-dependent protein kinase II contribute to the development of sustained β adrenergic receptor-stimulated cardiac hypertrophy in rats].
    Liu YL; Liu B; Qu YY; Chai HJ; Li R; Zhang L
    Sheng Li Xue Bao; 2013 Feb; 65(1):1-7. PubMed ID: 23426507
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.