BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 12818734)

  • 1. Reaction of N(alpha)-hippuryllysine with 2-hydroxyheptanal: a model for lysine-directed protein modifications by lipid peroxidation.
    Itakura K; Uchida K
    Chem Phys Lipids; 2003 Jul; 124(2):81-8. PubMed ID: 12818734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maillard reaction-like lysine modification by a lipid peroxidation product: immunochemical detection of protein-bound 2-hydroxyheptanal in vivo.
    Itakura K; Furuhata A; Shibata N; Kobayashi M; Uchida K
    Biochem Biophys Res Commun; 2003 Aug; 308(3):452-7. PubMed ID: 12914770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lysine-derived fluorophores formed by autoxidation of linoleic acid.
    Itakura K; Uchida K
    Chem Phys Lipids; 2003 Apr; 123(2):187-91. PubMed ID: 12691851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein N-acylation: H2O2-mediated covalent modification of protein by lipid peroxidation-derived saturated aldehydes.
    Ishino K; Shibata T; Ishii T; Liu YT; Toyokuni S; Zhu X; Sayre LM; Uchida K
    Chem Res Toxicol; 2008 Jun; 21(6):1261-70. PubMed ID: 18512967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis of acrolein-specific adducts generated during lipid peroxidation-modification of proteins in vitro: identification of N(τ)-(3-propanal)histidine as the major adduct.
    Maeshima T; Honda K; Chikazawa M; Shibata T; Kawai Y; Akagawa M; Uchida K
    Chem Res Toxicol; 2012 Jul; 25(7):1384-92. PubMed ID: 22716039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipoxidation products as biomarkers of oxidative damage to proteins during lipid peroxidation reactions.
    Requena JR; Fu MX; Ahmed MU; Jenkins AJ; Lyons TJ; Thorpe SR
    Nephrol Dial Transplant; 1996; 11 Suppl 5():48-53. PubMed ID: 9044307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the reaction of trans-2-heptenal with peanut proteins.
    Globisch M; Schindler M; Kreßler J; Henle T
    J Agric Food Chem; 2014 Aug; 62(33):8500-7. PubMed ID: 25065678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triosidines: novel Maillard reaction products and cross-links from the reaction of triose sugars with lysine and arginine residues.
    Tessier FJ; Monnier VM; Sayre LM; Kornfield JA
    Biochem J; 2003 Feb; 369(Pt 3):705-19. PubMed ID: 12379150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes induced in bovine serum albumin following interactions with the lipid peroxidation product E-2-octenal.
    Alaiz M; Barragán S
    Chem Phys Lipids; 1995 Aug; 77(2):217-23. PubMed ID: 7586100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endogenous formation of protein adducts with carcinogenic aldehydes: implications for oxidative stress.
    Ichihashi K; Osawa T; Toyokuni S; Uchida K
    J Biol Chem; 2001 Jun; 276(26):23903-13. PubMed ID: 11283024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model studies on the modification of proteins by lipoxidation-derived 2-hydroxyaldehydes.
    Liu Z; Sayre LM
    Chem Res Toxicol; 2003 Feb; 16(2):232-41. PubMed ID: 12588195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of malondialdehyde and 4-hydroxynonenal adducts to lysine residues in native and oxidized human low-density lipoprotein.
    Requena JR; Fu MX; Ahmed MU; Jenkins AJ; Lyons TJ; Baynes JW; Thorpe SR
    Biochem J; 1997 Feb; 322 ( Pt 1)(Pt 1):317-25. PubMed ID: 9078279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modifications of proteins by polyunsaturated fatty acid peroxidation products.
    Refsgaard HH; Tsai L; Stadtman ER
    Proc Natl Acad Sci U S A; 2000 Jan; 97(2):611-6. PubMed ID: 10639127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histidine and lysine as targets of oxidative modification.
    Uchida K
    Amino Acids; 2003 Dec; 25(3-4):249-57. PubMed ID: 14661088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical characterization of a protein-4-hydroxy-2-nonenal cross-link: immunochemical detection in mitochondria exposed to oxidative stress.
    Cohn JA; Tsai L; Friguet B; Szweda LI
    Arch Biochem Biophys; 1996 Apr; 328(1):158-64. PubMed ID: 8638925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein modification by lipid peroxidation products: formation of malondialdehyde-derived N(epsilon)-(2-propenol)lysine in proteins.
    Uchida K; Sakai K; Itakura K; Osawa T; Toyokuni S
    Arch Biochem Biophys; 1997 Oct; 346(1):45-52. PubMed ID: 9328283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence that malondialdehyde-derived aminoenimine is not a fluorescent age pigment.
    Itakura K; Uchida K
    Chem Res Toxicol; 2001 May; 14(5):473-5. PubMed ID: 11368543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal chelating and antioxidant activity of model Maillard reaction products.
    Wijewickreme AN; Kitts DD
    Adv Exp Med Biol; 1998; 434():245-54. PubMed ID: 9598204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of lipid-lysine amide-type adduct as a marker of PUFA oxidation and its applications.
    Kato Y; Osawa T
    Arch Biochem Biophys; 2010 Sep; 501(2):182-7. PubMed ID: 20558129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass spectrometric characterization of modifications to angiotensin II by lipid peroxidation products, 4-oxo-2(E)-nonenal and 4-hydroxy-2(E)-nonenal.
    Lee SH; Takahashi R; Goto T; Oe T
    Chem Res Toxicol; 2010 Nov; 23(11):1771-85. PubMed ID: 20977208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.