These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 12819229)

  • 1. Investigating the role of metal ions in the catalytic mechanism of the yeast RNA triphosphatase.
    Bisaillon M; Bougie I
    J Biol Chem; 2003 Sep; 278(36):33963-71. PubMed ID: 12819229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnesium-binding studies reveal fundamental differences between closely related RNA triphosphatases.
    Soulière MF; Perreault JP; Bisaillon M
    Nucleic Acids Res; 2008 Feb; 36(2):451-61. PubMed ID: 18039706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-function analysis of Plasmodium RNA triphosphatase and description of a triphosphate tunnel metalloenzyme superfamily that includes Cet1-like RNA triphosphatases and CYTH proteins.
    Gong C; Smith P; Shuman S
    RNA; 2006 Aug; 12(8):1468-74. PubMed ID: 16809816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An essential function of Saccharomyces cerevisiae RNA triphosphatase Cet1 is to stabilize RNA guanylyltransferase Ceg1 against thermal inactivation.
    Hausmann S; Ho CK; Schwer B; Shuman S
    J Biol Chem; 2001 Sep; 276(39):36116-24. PubMed ID: 11463793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A conserved domain of yeast RNA triphosphatase flanking the catalytic core regulates self-association and interaction with the guanylyltransferase component of the mRNA capping apparatus.
    Lehman K; Schwer B; Ho CK; Rouzankina I; Shuman S
    J Biol Chem; 1999 Aug; 274(32):22668-78. PubMed ID: 10428848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic, physical, and functional interactions between the triphosphatase and guanylyltransferase components of the yeast mRNA capping apparatus.
    Ho CK; Schwer B; Shuman S
    Mol Cell Biol; 1998 Sep; 18(9):5189-98. PubMed ID: 9710603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homodimeric quaternary structure is required for the in vivo function and thermal stability of Saccharomyces cerevisiae and Schizosaccharomyces pombe RNA triphosphatases.
    Hausmann S; Pei Y; Shuman S
    J Biol Chem; 2003 Aug; 278(33):30487-96. PubMed ID: 12788946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal requirements of a diadenosine pyrophosphatase from Bartonella bacilliformis: magnetic resonance and kinetic studies of the role of Mn2+.
    Conyers GB; Wu G; Bessman MJ; Mildvan AS
    Biochemistry; 2000 Mar; 39(9):2347-54. PubMed ID: 10694402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A yeast-based genetic system for functional analysis of viral mRNA capping enzymes.
    Ho CK; Martins A; Shuman S
    J Virol; 2000 Jun; 74(12):5486-94. PubMed ID: 10823853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal ion-binding studies highlight important differences between flaviviral RNA polymerases.
    Bougie I; Bisaillon M
    Biochim Biophys Acta; 2009 Jan; 1794(1):50-60. PubMed ID: 18930844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divalent metal requirements for catalysis and stability of the RNA triphosphatase from Trypanosoma cruzi.
    Massayuki Kikuti C; Tersariol IL; Schenkman S
    Mol Biochem Parasitol; 2006 Nov; 150(1):83-95. PubMed ID: 16887207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional groups required for the stability of yeast RNA triphosphatase in vitro and in vivo.
    Bisaillon M; Shuman S
    J Biol Chem; 2001 Aug; 276(32):30514-20. PubMed ID: 11395522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of metal ions in the maintenance of the tertiary and quaternary structure of arginase from Saccharomyces cerevisiae.
    Green SM; Ginsburg A; Lewis MS; Hensley P
    J Biol Chem; 1991 Nov; 266(32):21474-81. PubMed ID: 1939179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the metal ion binding properties of the hepatitis C virus RNA polymerase.
    Bougie I; Charpentier S; Bisaillon M
    J Biol Chem; 2003 Feb; 278(6):3868-75. PubMed ID: 12458224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-function analysis of the active site tunnel of yeast RNA triphosphatase.
    Bisaillon M; Shuman S
    J Biol Chem; 2001 May; 276(20):17261-6. PubMed ID: 11279161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The essential interaction between yeast mRNA capping enzyme subunits is not required for triphosphatase function in vivo.
    Takase Y; Takagi T; Komarnitsky PB; Buratowski S
    Mol Cell Biol; 2000 Dec; 20(24):9307-16. PubMed ID: 11094081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Initial binding of the broad spectrum antiviral nucleoside ribavirin to the hepatitis C virus RNA polymerase.
    Bougie I; Bisaillon M
    J Biol Chem; 2003 Dec; 278(52):52471-8. PubMed ID: 14563844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the soluble domain of the ABC7 type transporter Atm1.
    Chen CA; Cowan JA
    J Biol Chem; 2003 Dec; 278(52):52681-8. PubMed ID: 14514697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yeast-like mRNA capping apparatus in Giardia lamblia.
    Hausmann S; Altura MA; Witmer M; Singer SM; Elmendorf HG; Shuman S
    J Biol Chem; 2005 Apr; 280(13):12077-86. PubMed ID: 15556935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of metal binding to bovine inositol monophosphatase by changes in the near and far ultraviolet regions of the CD spectrum.
    Rees-Milton K; Thorne M; Greasley P; Churchich J; Gore MG
    Eur J Biochem; 1997 May; 246(1):211-7. PubMed ID: 9210486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.