These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 12819229)

  • 21. Structure of the Saccharomyces cerevisiae Cet1-Ceg1 mRNA capping apparatus.
    Gu M; Rajashankar KR; Lima CD
    Structure; 2010 Feb; 18(2):216-27. PubMed ID: 20159466
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Yeast and viral RNA 5' triphosphatases comprise a new nucleoside triphosphatase family.
    Ho CK; Pei Y; Shuman S
    J Biol Chem; 1998 Dec; 273(51):34151-6. PubMed ID: 9852075
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Importance of homodimerization for the in vivo function of yeast RNA triphosphatase.
    Lehman K; Ho CK; Shuman S
    J Biol Chem; 2001 May; 276(18):14996-5002. PubMed ID: 11279098
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of Schizosaccharomyces pombe RNA triphosphatase.
    Pei Y; Schwer B; Hausmann S; Shuman S
    Nucleic Acids Res; 2001 Jan; 29(2):387-96. PubMed ID: 11139608
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural and biochemical characterization of a new Mg(2+) binding site near Tyr94 in the restriction endonuclease PvuII.
    Spyridaki A; Matzen C; Lanio T; Jeltsch A; Simoncsits A; Athanasiadis A; Scheuring-Vanamee E; Kokkinidis M; Pingoud A
    J Mol Biol; 2003 Aug; 331(2):395-406. PubMed ID: 12888347
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solution structure and thermodynamics of a divalent metal ion binding site in an RNA pseudoknot.
    Gonzalez RL; Tinoco I
    J Mol Biol; 1999 Jun; 289(5):1267-82. PubMed ID: 10373367
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chlorella virus RNA triphosphatase. Mutational analysis and mechanism of inhibition by tripolyphosphate.
    Gong C; Shuman S
    J Biol Chem; 2002 May; 277(18):15317-24. PubMed ID: 11844801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Site-directed mutagenesis of proline 204 in the 'hinge' region of yeast phosphoglycerate kinase.
    McHarg J; Kelly SM; Price NC; Cooper A; Littlechild JA
    Eur J Biochem; 1999 Feb; 259(3):939-45. PubMed ID: 10092885
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energetics of RNA binding by the West Nile virus RNA triphosphatase.
    Benzaghou I; Bougie I; Picard-Jean F; Bisaillon M
    FEBS Lett; 2006 Feb; 580(3):867-77. PubMed ID: 16413541
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of tryptophan residues in the recognition of mutagenic oxidized nucleotides by human antimutator MTH1 protein.
    Takahashi M; Maraboeuf F; Sakai Y; Yakushiji H; Mishima M; Shirakawa M; Iwai S; Hayakawa H; Sekiguchi M; Nakabeppu Y
    J Mol Biol; 2002 May; 319(1):129-39. PubMed ID: 12051941
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Altered active site flexibility and a structural metal-binding site in eukaryotic dUTPase: kinetic characterization, folding, and crystallographic studies of the homotrimeric Drosophila enzyme.
    Kovári J; Barabás O; Takács E; Békési A; Dubrovay Z; Pongrácz V; Zagyva I; Imre T; Szabó P; Vértessy BG
    J Biol Chem; 2004 Apr; 279(17):17932-44. PubMed ID: 14724274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of divalent metal ions on individual steps of the Tetrahymena ribozyme reaction.
    McConnell TS; Herschlag D; Cech TR
    Biochemistry; 1997 Jul; 36(27):8293-303. PubMed ID: 9204875
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coordination of divalent metal ions in the active site of poly(A)-specific ribonuclease.
    Ren YG; Kirsebom LA; Virtanen A
    J Biol Chem; 2004 Nov; 279(47):48702-6. PubMed ID: 15358788
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Properties of partially purified endopolyphosphatase of the yeast Saccharomyces cerevisiae.
    Lichko LP; Kulakovskaya TV; Kulaev IS
    Biochemistry (Mosc); 2010 Nov; 75(11):1404-7. PubMed ID: 21314609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase.
    Harris TK; Wu G; Massiah MA; Mildvan AS
    Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of inositol monophosphatase, the putative target of lithium therapy.
    Pollack SJ; Atack JR; Knowles MR; McAllister G; Ragan CI; Baker R; Fletcher SR; Iversen LL; Broughton HB
    Proc Natl Acad Sci U S A; 1994 Jun; 91(13):5766-70. PubMed ID: 8016062
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of ATP binding to CheA containing tryptophan substitutions near the active site.
    Stewart RC
    Biochemistry; 2005 Mar; 44(11):4375-85. PubMed ID: 15766267
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cofactor and tryptophan accessibility and unfolding of brain glutamate decarboxylase.
    Rust E; Martin DL; Chen CH
    Arch Biochem Biophys; 2001 Aug; 392(2):333-40. PubMed ID: 11488610
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reversible denaturation of myo-inositol monophosphatase. The stability of the metal-binding loop.
    Moreno F; Corrales S; Garcia Blanco F; Gore MG; Rees-Milton K; Churchich JE
    Eur J Biochem; 1996 Sep; 240(2):435-42. PubMed ID: 8841409
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metal-induced change in catalytic loop positioning in Helicobacter pylori arginase alters catalytic function.
    Dutta A; Mazumder M; Alam M; Gourinath S; Sau AK
    Biochem J; 2019 Dec; 476(23):3595-3614. PubMed ID: 31746966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.