These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
421 related articles for article (PubMed ID: 12819775)
21. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale. Leroy F; Müller-Plathe F Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209 [TBL] [Abstract][Full Text] [Related]
22. Formation of superhydrophobic surfaces by biomimetic silicification and fluorination. Cho WK; Kang SM; Kim DJ; Yang SH; Choi IS Langmuir; 2006 Dec; 22(26):11208-13. PubMed ID: 17154605 [TBL] [Abstract][Full Text] [Related]
23. Petal effect: a superhydrophobic state with high adhesive force. Feng L; Zhang Y; Xi J; Zhu Y; Wang N; Xia F; Jiang L Langmuir; 2008 Apr; 24(8):4114-9. PubMed ID: 18312016 [TBL] [Abstract][Full Text] [Related]
24. Pressure induced transition between superhydrophobic states: configuration diagrams and effect of surface feature size. Liu B; Lange FF J Colloid Interface Sci; 2006 Jun; 298(2):899-909. PubMed ID: 16480735 [TBL] [Abstract][Full Text] [Related]
26. Observation of the rose petal effect over single- and dual-scale roughness surfaces. Yeh KY; Cho KH; Yeh YH; Promraksa A; Huang CH; Hsu CC; Chen LJ Nanotechnology; 2014 Aug; 25(34):345303. PubMed ID: 25100802 [TBL] [Abstract][Full Text] [Related]
27. Conversion of a metastable superhydrophobic surface to an ultraphobic surface. Li XM; He T; Crego-Calama M; Reinhoudt DN Langmuir; 2008 Aug; 24(15):8008-12. PubMed ID: 18605708 [TBL] [Abstract][Full Text] [Related]
28. The role of multiscale roughness in the Lotus effect: is it essential for super-hydrophobicity? Bittoun E; Marmur A Langmuir; 2012 Oct; 28(39):13933-42. PubMed ID: 22946829 [TBL] [Abstract][Full Text] [Related]
29. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces. Teisala H; Tuominen M; Aromaa M; Stepien M; Mäkelä JM; Saarinen JJ; Toivakka M; Kuusipalo J Langmuir; 2012 Feb; 28(6):3138-45. PubMed ID: 22263866 [TBL] [Abstract][Full Text] [Related]
36. Hysteresis with regard to Cassie and Wenzel states on superhydrophobic surfaces. Patankar NA Langmuir; 2010 May; 26(10):7498-503. PubMed ID: 20085371 [TBL] [Abstract][Full Text] [Related]
37. Wetting on nanoporous alumina surface: transition between Wenzel and Cassie states controlled by surface structure. Ran C; Ding G; Liu W; Deng Y; Hou W Langmuir; 2008 Sep; 24(18):9952-5. PubMed ID: 18702472 [TBL] [Abstract][Full Text] [Related]
38. Electrowetting control of Cassie-to-Wenzel transitions in superhydrophobic carbon nanotube-based nanocomposites. Han Z; Tay B; Tan C; Shakerzadeh M; Ostrikov KK ACS Nano; 2009 Oct; 3(10):3031-6. PubMed ID: 19754132 [TBL] [Abstract][Full Text] [Related]
39. Contact line and contact angle dynamics in superhydrophobic channels. Zhang J; Kwok DY Langmuir; 2006 May; 22(11):4998-5004. PubMed ID: 16700586 [TBL] [Abstract][Full Text] [Related]
40. Nanoscale patterning of microtextured surfaces to control superhydrophobic robustness. Cha TG; Yi JW; Moon MW; Lee KR; Kim HY Langmuir; 2010 Jun; 26(11):8319-26. PubMed ID: 20151676 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]