These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
421 related articles for article (PubMed ID: 12819775)
41. Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route. Wu X; Zheng L; Wu D Langmuir; 2005 Mar; 21(7):2665-7. PubMed ID: 15779932 [TBL] [Abstract][Full Text] [Related]
42. Equilibrium contact angles of liquid droplets on ideal rough solids. Kang HC; Jacobi AM Langmuir; 2011 Dec; 27(24):14910-8. PubMed ID: 22053925 [TBL] [Abstract][Full Text] [Related]
43. Dynamic effects of bouncing water droplets on superhydrophobic surfaces. Jung YC; Bhushan B Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153 [TBL] [Abstract][Full Text] [Related]
44. Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon. Zhu L; Xiu Y; Xu J; Tamirisa PA; Hess DW; Wong CP Langmuir; 2005 Nov; 21(24):11208-12. PubMed ID: 16285792 [TBL] [Abstract][Full Text] [Related]
45. Drop size effect on contact angle explained by nonextensive thermodynamics. Young's equation revisited. Letellier P; Mayaffre A; Turmine M J Colloid Interface Sci; 2007 Oct; 314(2):604-14. PubMed ID: 17624363 [TBL] [Abstract][Full Text] [Related]
46. Effects of geometrical characteristics of surface roughness on droplet wetting. Sheng YJ; Jiang S; Tsao HK J Chem Phys; 2007 Dec; 127(23):234704. PubMed ID: 18154406 [TBL] [Abstract][Full Text] [Related]
47. Design of a superhydrophobic surface using woven structures. Michielsen S; Lee HJ Langmuir; 2007 May; 23(11):6004-10. PubMed ID: 17465576 [TBL] [Abstract][Full Text] [Related]
48. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces. Zheng QS; Yu Y; Zhao ZH Langmuir; 2005 Dec; 21(26):12207-12. PubMed ID: 16342993 [TBL] [Abstract][Full Text] [Related]
49. Analytical modeling and thermodynamic analysis of robust superhydrophobic surfaces with inverse-trapezoidal microstructures. Im M; Im H; Lee JH; Yoon JB; Choi YK Langmuir; 2010 Nov; 26(22):17389-97. PubMed ID: 20879754 [TBL] [Abstract][Full Text] [Related]
50. Microtextured superhydrophobic surfaces: a thermodynamic analysis. Li W; Amirfazli A Adv Colloid Interface Sci; 2007 Apr; 132(2):51-68. PubMed ID: 17331459 [TBL] [Abstract][Full Text] [Related]
51. Spray-coated fluorine-free superhydrophobic coatings with easy repairability and applicability. Wu W; Wang X; Liu X; Zhou F ACS Appl Mater Interfaces; 2009 Aug; 1(8):1656-61. PubMed ID: 20355780 [TBL] [Abstract][Full Text] [Related]
52. Fully reversible transition from Wenzel to Cassie-Baxter states on corrugated superhydrophobic surfaces. Vrancken RJ; Kusumaatmaja H; Hermans K; Prenen AM; Pierre-Louis O; Bastiaansen CW; Broer DJ Langmuir; 2010 Mar; 26(5):3335-41. PubMed ID: 19928892 [TBL] [Abstract][Full Text] [Related]
53. Control over wettability of polyethylene glycol surfaces using capillary lithography. Suh KY; Jon S Langmuir; 2005 Jul; 21(15):6836-41. PubMed ID: 16008394 [TBL] [Abstract][Full Text] [Related]
54. Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions. Nosonovsky M; Bhushan B Langmuir; 2008 Feb; 24(4):1525-33. PubMed ID: 18072794 [TBL] [Abstract][Full Text] [Related]
55. Cassie-Wenzel wetting transition in vibrating drops deposited on rough surfaces: is the dynamic Cassie-Wenzel wetting transition a 2D or 1D affair? Bormashenko E; Pogreb R; Whyman G; Erlich M Langmuir; 2007 Jun; 23(12):6501-3. PubMed ID: 17497815 [TBL] [Abstract][Full Text] [Related]
56. Resonance Cassie-Wenzel wetting transition for horizontally vibrated drops deposited on a rough surface. Bormashenko E; Pogreb R; Whyman G; Erlich M Langmuir; 2007 Nov; 23(24):12217-21. PubMed ID: 17956134 [TBL] [Abstract][Full Text] [Related]
57. Systematic control of hydrophobic and superhydrophobic properties using double-rough structures based on mixtures of metal oxide nanoparticles. Hipp B; Kunert I; Dürr M Langmuir; 2010 May; 26(9):6557-60. PubMed ID: 20387854 [TBL] [Abstract][Full Text] [Related]
58. Wetting and wetting transitions on copper-based super-hydrophobic surfaces. Shirtcliffe NJ; McHale G; Newton MI; Perry CC Langmuir; 2005 Feb; 21(3):937-43. PubMed ID: 15667171 [TBL] [Abstract][Full Text] [Related]
59. When Wenzel and Cassie are right: reconciling local and global considerations. Marmur A; Bittoun E Langmuir; 2009 Feb; 25(3):1277-81. PubMed ID: 19125688 [TBL] [Abstract][Full Text] [Related]
60. Novel method of producing a superhydrophobic surface on Si. Liu B; Lange FF Langmuir; 2010 Mar; 26(5):3637-40. PubMed ID: 19928882 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]