BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 12820116)

  • 1. Quantitative analysis of cytoskeletal organization by digital fluorescent microscopy.
    Lichtenstein N; Geiger B; Kam Z
    Cytometry A; 2003 Jul; 54(1):8-18. PubMed ID: 12820116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological study of fibroblasts treated with cytochalasin D and colchicine using a confocal laser scanning microscopy.
    Ujihara Y; Miyazaki H; Wada S
    J Physiol Sci; 2008 Dec; 58(7):499-506. PubMed ID: 18928641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of the effect of oxidative stress on the cytoskeleton in human cortical neurons.
    Allani PK; Sum T; Bhansali SG; Mukherjee SK; Sonee M
    Toxicol Appl Pharmacol; 2004 Apr; 196(1):29-36. PubMed ID: 15050405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cytoskeleton of the cynomolgus monkey trabecular cell. II. Influence of cytoskeleton-active drugs.
    Weinreb RN; Ryder MI; Polansky JR
    Invest Ophthalmol Vis Sci; 1986 Sep; 27(9):1312-7. PubMed ID: 3744723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FHOD1 coordinates actin filament and microtubule alignment to mediate cell elongation.
    Gasteier JE; Schroeder S; Muranyi W; Madrid R; Benichou S; Fackler OT
    Exp Cell Res; 2005 May; 306(1):192-202. PubMed ID: 15878344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal analysis of total internal reflection fluorescent speckle microscopy (TIR-FSM) and wide-field epi-fluorescence FSM of the actin cytoskeleton and focal adhesions in living cells.
    Adams MC; Matov A; Yarar D; Gupton SL; Danuser G; Waterman-Storer CM
    J Microsc; 2004 Nov; 216(Pt 2):138-52. PubMed ID: 15516225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The effect of microtubules on the morphology of a fibroblast monolayer and its extracellular matrix].
    Domnina LV; Ivanova OIu; Vasil'ev IuM
    Tsitologiia; 1996; 38(3):300-4. PubMed ID: 8768096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cytoskeleton of the cynomolgus monkey trabecular cell. I. General considerations.
    Ryder MI; Weinreb RN
    Invest Ophthalmol Vis Sci; 1986 Sep; 27(9):1305-11. PubMed ID: 3744722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Composite polymer systems with control of local substrate elasticity and their effect on cytoskeletal and morphological characteristics of adherent cells.
    Chou SY; Cheng CM; LeDuc PR
    Biomaterials; 2009 Jun; 30(18):3136-42. PubMed ID: 19299009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative fluorescence microscopy techniques.
    Esposito A; Schlachter S; Schierle GS; Elder AD; Diaspro A; Wouters FS; Kaminski CF; Iliev AI
    Methods Mol Biol; 2009; 586():117-42. PubMed ID: 19768427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High hydrostatic pressure effects in vivo: changes in cell morphology, microtubule assembly, and actin organization.
    Bourns B; Franklin S; Cassimeris L; Salmon ED
    Cell Motil Cytoskeleton; 1988; 10(3):380-90. PubMed ID: 3052872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the integrin-actin linkage using high-resolution protein velocity mapping.
    Brown CM; Hebert B; Kolin DL; Zareno J; Whitmore L; Horwitz AR; Wiseman PW
    J Cell Sci; 2006 Dec; 119(Pt 24):5204-14. PubMed ID: 17158922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperthermia-induced reorganization of microtubules and microfilaments and cell killing in CHO AA8 cell line.
    Grzanka D; Stepien A; Grzanka A; Gackowska L; Helmin-Basa A; Szczepanski MA
    Neoplasma; 2008; 55(5):409-15. PubMed ID: 18665751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of TIRF microscopy to visualize actin and microtubules in migrating cells.
    Manneville JB
    Methods Enzymol; 2006; 406():520-32. PubMed ID: 16472684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative study of the cytoskeleton binding drugs nocodazole and taxol with a mammalian cell quartz crystal microbalance biosensor: different dynamic responses and energy dissipation effects.
    Marx KA; Zhou T; Montrone A; McIntosh D; Braunhut SJ
    Anal Biochem; 2007 Feb; 361(1):77-92. PubMed ID: 17161375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An in vitro model system for cytoskeletal confinement.
    Köster S; Pfohl T
    Cell Motil Cytoskeleton; 2009 Oct; 66(10):771-6. PubMed ID: 19137583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of extracellular matrix on adhesion, viability, actin cytoskeleton and K+ currents of cells expressing human ether à go-go channels.
    Toral C; Mendoza-Garrido ME; Azorín E; Hernández-Gallegos E; Gomora JC; Delgadillo DM; Solano-Agama C; Camacho J
    Life Sci; 2007 Jun; 81(3):255-65. PubMed ID: 17586530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlative fluorescence and transmission electron microscopy: an elegant tool to study the actin cytoskeleton of whole-mount (breast) cancer cells.
    Jahn KA; Barton DA; Su Y; Riches J; Kable EP; Soon LL; Braet F
    J Microsc; 2009 Sep; 235(3):282-92. PubMed ID: 19754723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motion tracking of the outer tips of microtubules.
    Hadjidemetriou S; Toomre D; Duncan J
    Med Image Anal; 2008 Dec; 12(6):689-702. PubMed ID: 18571462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disruption of microtubules induces formation of actin fibrils in density-inhibited 3T3 cells.
    Kajstura J; Bereiter-Hahn J
    Cell Biol Int; 1993 Nov; 17(11):1023-31. PubMed ID: 8111344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.