These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 12820126)
1. The SAAP force field. A simple approach to a new all-atom protein force field by using single amino acid potential (SAAP) functions in various solvents. Iwaoka M; Tomoda S J Comput Chem; 2003 Jul; 24(10):1192-200. PubMed ID: 12820126 [TBL] [Abstract][Full Text] [Related]
2. The SAAP force field: development of the single amino acid potentials for 20 proteinogenic amino acids and Monte Carlo molecular simulation for short peptides. Iwaoka M; Kimura N; Yosida D; Minezaki T J Comput Chem; 2009 Oct; 30(13):2039-55. PubMed ID: 19140140 [TBL] [Abstract][Full Text] [Related]
3. Importance of the single amino acid potential in water for secondary and tertiary structures of proteins. Iwaoka M; Yosida D; Kimura N J Phys Chem B; 2006 Jul; 110(29):14475-82. PubMed ID: 16854159 [TBL] [Abstract][Full Text] [Related]
4. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. Mackerell AD; Feig M; Brooks CL J Comput Chem; 2004 Aug; 25(11):1400-15. PubMed ID: 15185334 [TBL] [Abstract][Full Text] [Related]
5. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials. Hassan SA; Mehler EL; Zhang D; Weinstein H Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268 [TBL] [Abstract][Full Text] [Related]
6. FDS: flexible ligand and receptor docking with a continuum solvent model and soft-core energy function. Taylor RD; Jewsbury PJ; Essex JW J Comput Chem; 2003 Oct; 24(13):1637-56. PubMed ID: 12926007 [TBL] [Abstract][Full Text] [Related]
7. A new force field (ECEPP-05) for peptides, proteins, and organic molecules. Arnautova YA; Jagielska A; Scheraga HA J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746 [TBL] [Abstract][Full Text] [Related]
8. Comparison of a QM/MM force field and molecular mechanics force fields in simulations of alanine and glycine "dipeptides" (Ace-Ala-Nme and Ace-Gly-Nme) in water in relation to the problem of modeling the unfolded peptide backbone in solution. Hu H; Elstner M; Hermans J Proteins; 2003 Feb; 50(3):451-63. PubMed ID: 12557187 [TBL] [Abstract][Full Text] [Related]
9. New-generation amber united-atom force field. Yang L; Tan CH; Hsieh MJ; Wang J; Duan Y; Cieplak P; Caldwell J; Kollman PA; Luo R J Phys Chem B; 2006 Jul; 110(26):13166-76. PubMed ID: 16805629 [TBL] [Abstract][Full Text] [Related]
10. Ab initio protein structure prediction with force field parameters derived from water-phase quantum chemical calculation. Katagiri D; Fuji H; Neya S; Hoshino T J Comput Chem; 2008 Sep; 29(12):1930-44. PubMed ID: 18366016 [TBL] [Abstract][Full Text] [Related]
11. CHARMM fluctuating charge force field for proteins: II protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model. Patel S; Mackerell AD; Brooks CL J Comput Chem; 2004 Sep; 25(12):1504-14. PubMed ID: 15224394 [TBL] [Abstract][Full Text] [Related]
12. A coarse-grained protein-protein potential derived from an all-atom force field. Basdevant N; Borgis D; Ha-Duong T J Phys Chem B; 2007 Aug; 111(31):9390-9. PubMed ID: 17616119 [TBL] [Abstract][Full Text] [Related]
13. Physical scoring function based on AMBER force field and Poisson-Boltzmann implicit solvent for protein structure prediction. Hsieh MJ; Luo R Proteins; 2004 Aug; 56(3):475-86. PubMed ID: 15229881 [TBL] [Abstract][Full Text] [Related]
14. Exploratory studies of ab initio protein structure prediction: multiple copy simulated annealing, AMBER energy functions, and a generalized born/solvent accessibility solvation model. Liu Y; Beveridge DL Proteins; 2002 Jan; 46(1):128-46. PubMed ID: 11746709 [TBL] [Abstract][Full Text] [Related]
15. On use of the Amber potential with the Langevin dipole method. Mijajlovic M; Biggs MJ J Phys Chem B; 2007 Jul; 111(26):7591-602. PubMed ID: 17550281 [TBL] [Abstract][Full Text] [Related]
16. The combined simulation approach of atomistic and continuum models for the thermodynamics of lysozyme crystals. Chang J; Lenhoff AM; Sandler SI J Phys Chem B; 2005 Oct; 109(41):19507-15. PubMed ID: 16853520 [TBL] [Abstract][Full Text] [Related]
17. An approach to developing a force field for molecular simulation of martensitic phase transitions between phases with subtle differences in energy and structure. Tuble SC; Anwar J; Gale JD J Am Chem Soc; 2004 Jan; 126(1):396-405. PubMed ID: 14709107 [TBL] [Abstract][Full Text] [Related]
18. Conformational analysis of endothelin-1: effects of solvation free energy. Hempel JC; Fine RM; Hassan M; Ghoul W; Guaragna A; Koerber SC; Li Z; Hagler AT Biopolymers; 1995 Sep; 36(3):283-301. PubMed ID: 7669916 [TBL] [Abstract][Full Text] [Related]
19. Electrostatics of proteins in dielectric solvent continua. II. First applications in molecular dynamics simulations. Stork M; Tavan P J Chem Phys; 2007 Apr; 126(16):165106. PubMed ID: 17477638 [TBL] [Abstract][Full Text] [Related]
20. An efficient molecular docking using conformational space annealing. Lee K; Czaplewski C; Kim SY; Lee J J Comput Chem; 2005 Jan; 26(1):78-87. PubMed ID: 15538770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]