BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 12820134)

  • 1. Energy decomposition in molecular complexes: implications for the treatment of polarization in molecular simulations.
    Curutchet C; Bofill JM; Hernández B; Orozco M; Luque FJ
    J Comput Chem; 2003 Jul; 24(10):1263-75. PubMed ID: 12820134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redistributed charge and dipole schemes for combined quantum mechanical and molecular mechanical calculations.
    Lin H; Truhlar DG
    J Phys Chem A; 2005 May; 109(17):3991-4004. PubMed ID: 16833721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward a consistent treatment of polarization in model QM/MM calculations.
    Illingworth CJ; Parkes KE; Snell CR; Ferenczy GG; Reynolds CA
    J Phys Chem A; 2008 Nov; 112(47):12151-6. PubMed ID: 18986123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classical polarization in hybrid QM/MM methods.
    Illingworth CJ; Gooding SR; Winn PJ; Jones GA; Ferenczy GG; Reynolds CA
    J Phys Chem A; 2006 May; 110(20):6487-97. PubMed ID: 16706406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid approach combining energy density analysis with the interaction energy decomposition method.
    Kawamura Y; Nakai H
    J Comput Chem; 2004 Nov; 25(15):1882-7. PubMed ID: 15376251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unravelling the origin of intermolecular interactions using absolutely localized molecular orbitals.
    Khaliullin RZ; Cobar EA; Lochan RC; Bell AT; Head-Gordon M
    J Phys Chem A; 2007 Sep; 111(36):8753-65. PubMed ID: 17655284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accounting for polarization cost when using fixed charge force fields. II. Method and application for computing effect of polarization cost on free energy of hydration.
    Swope WC; Horn HW; Rice JE
    J Phys Chem B; 2010 Jul; 114(26):8631-45. PubMed ID: 20540502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progress in the understanding of drug-receptor interactions, part 2: experimental and theoretical electrostatic moments and interaction energies of an angiotensin II receptor antagonist (C30H30N6(O)3S).
    Soave R; Barzaghi M; Destro R
    Chemistry; 2007; 13(24):6942-56. PubMed ID: 17539033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the performance of molecular polarization methods. I. Water and carbon tetrachloride close to a point charge.
    Masia M; Probst M; Rey R
    J Chem Phys; 2004 Oct; 121(15):7362-78. PubMed ID: 15473807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical determination of the standard reduction potentials of pheophytin-a in N,N-dimethyl formamide and membrane.
    Mehta N; Datta SN
    J Phys Chem B; 2007 Jun; 111(25):7210-7. PubMed ID: 17536851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pKa calculations in solution and proteins with QM/MM free energy perturbation simulations: a quantitative test of QM/MM protocols.
    Riccardi D; Schaefer P; Cui Q
    J Phys Chem B; 2005 Sep; 109(37):17715-33. PubMed ID: 16853267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of charge distribution on RDX adsorption in IRMOF-10.
    Xiong R; Keffer DJ; Fuentes-Cabrera M; Nicholson DM; Michalkova A; Petrova T; Leszczynski J; Odbadrakh K; Doss BL; Lewis JP
    Langmuir; 2010 Apr; 26(8):5942-50. PubMed ID: 20205416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ONIOM-based QM:QM electronic embedding method using Löwdin atomic charges: energies and analytic gradients.
    Mayhall NJ; Raghavachari K; Hratchian HP
    J Chem Phys; 2010 Mar; 132(11):114107. PubMed ID: 20331281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pair interaction energy decomposition analysis.
    Fedorov DG; Kitaura K
    J Comput Chem; 2007 Jan; 28(1):222-37. PubMed ID: 17109433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations.
    Mackerell AD; Feig M; Brooks CL
    J Comput Chem; 2004 Aug; 25(11):1400-15. PubMed ID: 15185334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential energy surfaces for small alcohol dimers I: methanol and ethanol.
    Rowley RL; Tracy CM; Pakkanen TA
    J Chem Phys; 2006 Oct; 125(15):154302. PubMed ID: 17059250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QM/MM-PBSA method to estimate free energies for reactions in proteins.
    Kaukonen M; Söderhjelm P; Heimdal J; Ryde U
    J Phys Chem B; 2008 Oct; 112(39):12537-48. PubMed ID: 18781715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of polarization on the opsin shift in rhodopsins. 2. Empirical polarization models for proteins.
    Wanko M; Hoffmann M; Frähmcke J; Frauenheim T; Elstner M
    J Phys Chem B; 2008 Sep; 112(37):11468-78. PubMed ID: 18729405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple and exact approach to the electronic polarization effect on the solvation free energy: formulation for quantum-mechanical/molecular-mechanical system and its applications to aqueous solutions.
    Takahashi H; Omi A; Morita A; Matubayasi N
    J Chem Phys; 2012 Jun; 136(21):214503. PubMed ID: 22697554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.