BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

515 related articles for article (PubMed ID: 12820161)

  • 1. Lazy eyes zebrafish mutation affects Müller glial cells, compromising photoreceptor function and causing partial blindness.
    Kainz PM; Adolph AR; Wong KY; Dowling JE
    J Comp Neurol; 2003 Aug; 463(3):265-80. PubMed ID: 12820161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retinal regional differences in photoreceptor cell death and regeneration in light-lesioned albino zebrafish.
    Vihtelic TS; Soverly JE; Kassen SC; Hyde DR
    Exp Eye Res; 2006 Apr; 82(4):558-75. PubMed ID: 16199033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Zebrafish fade out mutant: a novel genetic model for Hermansky-Pudlak syndrome.
    Bahadori R; Rinner O; Schonthaler HB; Biehlmaier O; Makhankov YV; Rao P; Jagadeeswaran P; Neuhauss SC
    Invest Ophthalmol Vis Sci; 2006 Oct; 47(10):4523-31. PubMed ID: 17003448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigations of photoreceptor synaptic transmission and light adaptation in the zebrafish visual mutant nrc.
    Van Epps HA; Yim CM; Hurley JB; Brockerhoff SE
    Invest Ophthalmol Vis Sci; 2001 Mar; 42(3):868-74. PubMed ID: 11222552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CNTF induces photoreceptor neuroprotection and Müller glial cell proliferation through two different signaling pathways in the adult zebrafish retina.
    Kassen SC; Thummel R; Campochiaro LA; Harding MJ; Bennett NA; Hyde DR
    Exp Eye Res; 2009 Jun; 88(6):1051-64. PubMed ID: 19450453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detailed histopathologic characterization of the retinopathy, globe enlarged (rge) chick phenotype.
    Montiani-Ferreira F; Fischer A; Cernuda-Cernuda R; Kiupel M; DeGrip WJ; Sherry D; Cho SS; Shaw GC; Evans MG; Hocking PM; Petersen-Jones SM
    Mol Vis; 2005 Jan; 11():11-27. PubMed ID: 15660021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow-progressing photoreceptor cell degeneration in night blindness c mutant zebrafish.
    Maaswinkel H; Ren JQ; Li L
    J Neurocytol; 2003 Nov; 32(9):1107-16. PubMed ID: 15044842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavioral screening for nightblindness mutants in zebrafish reveals three new loci that cause dominant photoreceptor cell degeneration.
    Maaswinkel H; Riesbeck LE; Riley ME; Carr AL; Mullin JP; Nakamoto AT; Li L
    Mech Ageing Dev; 2005 Oct; 126(10):1079-89. PubMed ID: 15922406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversal of functional loss in the P23H-3 rat retina by management of ambient light.
    Jozwick C; Valter K; Stone J
    Exp Eye Res; 2006 Nov; 83(5):1074-80. PubMed ID: 16822506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoreceptor synapses degenerate early in experimental choroidal neovascularization.
    Caicedo A; Espinosa-Heidmann DG; Hamasaki D; Piña Y; Cousins SW
    J Comp Neurol; 2005 Mar; 483(3):263-77. PubMed ID: 15682400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimising the structure and function of the adult P23H-3 retina by light management in the juvenile and adult.
    Valter K; Kirk DK; Stone J
    Exp Eye Res; 2009 Dec; 89(6):1003-11. PubMed ID: 19729008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoreceptor morphology is severely affected in the beta,beta-carotene-15,15'-oxygenase (bcox) zebrafish morphant.
    Biehlmaier O; Lampert JM; von Lintig J; Kohler K
    Eur J Neurosci; 2005 Jan; 21(1):59-68. PubMed ID: 15654843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A frameshift mutation in RPGR exon ORF15 causes photoreceptor degeneration and inner retina remodeling in a model of X-linked retinitis pigmentosa.
    Beltran WA; Hammond P; Acland GM; Aguirre GD
    Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1669-81. PubMed ID: 16565408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental abnormalities in the Nuc1 rat retina: a spontaneous mutation that affects neuronal and vascular remodeling and retinal function.
    Gehlbach P; Hose S; Lei B; Zhang C; Cano M; Arora M; Neal R; Barnstable C; Goldberg MF; Zigler JS; Sinha D
    Neuroscience; 2006; 137(2):447-61. PubMed ID: 16289888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular responses to photoreceptor death in the rd1 mouse model of retinal degeneration.
    Punzo C; Cepko C
    Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):849-57. PubMed ID: 17251487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time course and development of light adaptation processes in the outer zebrafish retina.
    Hodel C; Neuhauss SC; Biehlmaier O
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Jun; 288(6):653-62. PubMed ID: 16721865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retardation of photoreceptor degeneration in the detached retina of rd1 mouse.
    Kaneko H; Nishiguchi KM; Nakamura M; Kachi S; Terasaki H
    Invest Ophthalmol Vis Sci; 2008 Feb; 49(2):781-7. PubMed ID: 18235028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of abnormal light-rearing conditions on retinal physiology in larvae zebrafish.
    Saszik S; Bilotta J
    Invest Ophthalmol Vis Sci; 1999 Nov; 40(12):3026-31. PubMed ID: 10549668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The status of cones in the rhodopsin mutant P23H-3 retina: light-regulated damage and repair in parallel with rods.
    Chrysostomou V; Stone J; Stowe S; Barnett NL; Valter K
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1116-25. PubMed ID: 18326739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light exposure causes functional changes in the retina: increased photoreceptor cation channel permeability, photoreceptor apoptosis, and altered retinal metabolic function.
    Yu TY; Acosta ML; Ready S; Cheong YL; Kalloniatis M
    J Neurochem; 2007 Oct; 103(2):714-24. PubMed ID: 17623037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.