These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
69 related articles for article (PubMed ID: 12820256)
1. An active-site model of prostaglandin H synthase: an iron "twin-coronet" porphyrin with an aryloxyl radical overhang and its catalytic oxygenation of 1,4-diene. Matsui E; Naruta Y; Tani F; Shimazaki Y Angew Chem Int Ed Engl; 2003 Jun; 42(24):2744-7. PubMed ID: 12820256 [No Abstract] [Full Text] [Related]
2. Mechanism of free radical oxygenation of polyunsaturated fatty acids by cyclooxygenases. Rouzer CA; Marnett LJ Chem Rev; 2003 Jun; 103(6):2239-304. PubMed ID: 12797830 [No Abstract] [Full Text] [Related]
3. The productive conformation of prostaglandin G2 at the peroxidase site of prostaglandin endoperoxide H synthase: docking, molecular dynamics, and site-directed mutagenesis studies. Chubb AJ; Fitzgerald DJ; Nolan KB; Moman E Biochemistry; 2006 Jan; 45(3):811-20. PubMed ID: 16411757 [TBL] [Abstract][Full Text] [Related]
4. Identification of Tyr504 as an alternative tyrosyl radical site in human prostaglandin H synthase-2. Rogge CE; Liu W; Wu G; Wang LH; Kulmacz RJ; Tsai AL Biochemistry; 2004 Feb; 43(6):1560-8. PubMed ID: 14769032 [TBL] [Abstract][Full Text] [Related]
5. Propene activation by the oxo-iron active species of taurine/alpha-ketoglutarate dioxygenase (TauD) enzyme. How does the catalysis compare to heme-enzymes? de Visser SP J Am Chem Soc; 2006 Aug; 128(30):9813-24. PubMed ID: 16866538 [TBL] [Abstract][Full Text] [Related]
6. Solution structure of a common substrate mimetic of cyclooxygenase-downstream synthases bound to an engineered thromboxane A2 synthase using a high-resolution NMR technique. Ruan KH; Wu J; Wang LH Arch Biochem Biophys; 2005 Dec; 444(2):165-73. PubMed ID: 16297851 [TBL] [Abstract][Full Text] [Related]
7. 2.0 angstroms structure of prostaglandin H2 synthase-1 reconstituted with a manganese porphyrin cofactor. Gupta K; Selinsky BS; Loll PJ Acta Crystallogr D Biol Crystallogr; 2006 Feb; 62(Pt 2):151-6. PubMed ID: 16421446 [TBL] [Abstract][Full Text] [Related]
8. Dioxygen activation by copper, heme and non-heme iron enzymes: comparison of electronic structures and reactivities. Decker A; Solomon EI Curr Opin Chem Biol; 2005 Apr; 9(2):152-63. PubMed ID: 15811799 [TBL] [Abstract][Full Text] [Related]
9. Quantum chemical calculations of the NHA bound nitric oxide synthase active site: O2 binding and implications for the catalytic mechanism. Cho KB; Gauld JW J Am Chem Soc; 2004 Aug; 126(33):10267-70. PubMed ID: 15315438 [TBL] [Abstract][Full Text] [Related]
11. Efficient photocatalytic oxygenation of aromatic alkene to 1,2-dioxetane with oxygen via electron transfer. Ohkubo K; Nanjo T; Fukuzumi S Org Lett; 2005 Sep; 7(19):4265-8. PubMed ID: 16146403 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the nitrosyl adduct of substrate-bound mouse cysteine dioxygenase by electron paramagnetic resonance: electronic structure of the active site and mechanistic implications. Pierce BS; Gardner JD; Bailey LJ; Brunold TC; Fox BG Biochemistry; 2007 Jul; 46(29):8569-78. PubMed ID: 17602574 [TBL] [Abstract][Full Text] [Related]
13. Regulation of cyclooxygenase catalysis by hydroperoxides. Kulmacz RJ Biochem Biophys Res Commun; 2005 Dec; 338(1):25-33. PubMed ID: 16115608 [TBL] [Abstract][Full Text] [Related]
14. A highly efficient non-heme manganese complex in oxygenation reactions. Nehru K; Kim SJ; Kim IY; Seo MS; Kim Y; Kim SJ; Kim J; Nam W Chem Commun (Camb); 2007 Nov; (44):4623-5. PubMed ID: 17989812 [TBL] [Abstract][Full Text] [Related]
15. Energy-gaining formation and catalytic behavior of active structures in a SiO(2)-supported unsaturated Ru complex catalyst for alkene epoxidation by DFT calculations. Coquet R; Tada M; Iwasawa Y Phys Chem Chem Phys; 2007 Dec; 9(45):6040-6. PubMed ID: 18004419 [TBL] [Abstract][Full Text] [Related]
16. Dioxygenases without requirement for cofactors and their chemical model reaction: compulsory order ternary complex mechanism of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase involving general base catalysis by histidine 251 and single-electron oxidation of the substrate dianion. Frerichs-Deeken U; Ranguelova K; Kappl R; Hüttermann J; Fetzner S Biochemistry; 2004 Nov; 43(45):14485-99. PubMed ID: 15533053 [TBL] [Abstract][Full Text] [Related]
17. A Michaelis-Menten-style model for the autocatalytic enzyme prostaglandin H synthase. Tien JH; Hazelton WD; Sparks R; Ulrich CM Bull Math Biol; 2005 Jul; 67(4):683-700. PubMed ID: 15893548 [TBL] [Abstract][Full Text] [Related]
18. Protein dynamics and electrostatics in the function of p-hydroxybenzoate hydroxylase. Entsch B; Cole LJ; Ballou DP Arch Biochem Biophys; 2005 Jan; 433(1):297-311. PubMed ID: 15581585 [TBL] [Abstract][Full Text] [Related]
19. Nonheme iron(II) complexes of macrocyclic ligands in the generation of oxoiron(IV) complexes and the catalytic epoxidation of olefins. Suh Y; Seo MS; Kim KM; Kim YS; Jang HG; Tosha T; Kitagawa T; Kim J; Nam W J Inorg Biochem; 2006 Apr; 100(4):627-33. PubMed ID: 16458358 [TBL] [Abstract][Full Text] [Related]
20. Synthetic models of the active site of cytochrome C oxidase: influence of tridentate or tetradentate copper chelates bearing a His--Tyr linkage mimic on dioxygen adduct formation by heme/Cu complexes. Liu JG; Naruta Y; Tani F Chemistry; 2007; 13(22):6365-78. PubMed ID: 17503416 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]